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Abstract

In this brief note, we study a toy scaled dot-product attention model with Gaussian logits and a
softmax inverse temperature . Matching the bulk log-sum-exp scale of log Zg with the extreme-
value scale of the maximum logit yields an N-dependent condensation crossover S.(N,o) =
o0~1y/2log N. Under the scaling = B¢, Wmax — O for t < 1 while wpqr = O(1) for t > 1,
approaching 1 only when /8. — oco. Because, . — oo with N, fixed = O(1) remains diffuse as
N — o0, and the Transformer’s d ~V2 scaling can be read as keeping logit variance O(1) to avoid
trivial noise-driven condensation.

Let us define a toy attention model. Let N be the sequence length (the number of competing keys). Let
d denote the head dimension dj, (the dimension of g and each key % ; within one head).! Lastly, we
define inverse temperature §§ = 0, a softmax sharpness. Let the query be a (possibly random) vector
g € R%. Let the keys be k1,...,kx € R?. Using this, let us define scaled dot-product logits:
U--:iqu j=1,...,N (1)
3= g ki oo N,

and define softmax attention weights

exp (BU;) N
B Y I— ;= 1, = 0. (2)
S ew(pU) 5T

With this, let us define the partition function

R

N
Zﬁ::; exp (BU/). 3)
=

We wish to examine attention collapse. A clean order parameter is the maximum attention weight

Wmax .—}{rel[a]l\;ﬁ wj. 4)
A diffuse attention would result in the maximum attention weight vanishing as N — co?. A collapsed
attention means w gy = O(1), with wp,qx — 1 only in a deep low-temperature limit where softmax
approaches a hard argmax. We will show a sharp threshold in § separating these regimes.
Assume the keys are i.i.d. standard Gaussian & Hid N(0,14) and q is independent of {k}. First, let us
condition on q. Because k; is normally distributed,

qTk;1q ~N©,lqI?) = U, | q ~N(©,0?),
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with the conditional variance defined as g2 := ||q||2/d. Moreover, conditional on g, the U are i.i.d. Let
My := max ey Uj. Then, always,

exp (BMy)<Zp<Nexp(SMpy). (5)
Taking logarithms, we arrive at
BMN <logZg < My +log N.

This is simply because the largest term is at most the sum, and the sum is at most N times the largest
term. A sharp finite-size crossover emerges from a competition. In the bulk regime, many terms
contribute to Zg. In the maximum regime, a finite number of extreme terms dominate Z.

It is useful to separate annealed and quenched log-partitions. Define

Apg:=logE[Zglq], Qp:=E[logZs|q].

By Jensen, @ g < A g. We compute the annealed partition function using the moment

1
E[Zg | q] = NE[exp (BU)]= N exp (5 ,6202) , U~N(©,02),
SO 1
Aﬁ=logN+§ﬂ2a2. (6)
To relate this to the typical (quenched) behavior of log Z g, note that the map
N
(u1,...,un) — log( Z eﬁuf)
j=1

is B-Lipschitz in the Euclidean norm: its gradient is f(w1,...,wn), so [[VlegZgll2 = Bllwll2 < B. Hence,
conditional on g, standard Gaussian concentration for Lipschitz functions implies that log Z g fluctuates
around @ g by at most O(fo) with overwhelming probability [5]. In the regime where log Z g is order
log N, these fluctuations are lower-order. In the high-temperature (bulk) regime, standard random
energy model arguments (or a second-moment method) imply that @ g = Ag + o(log N), i.e. annealed
and quenched free energies match at leading order [3]. Thus, in the bulk regime, A g is a correct log-scale
approximation for log Z :

log Zgs zlogN+%ﬁ202. 7)
For N ii.d. Gaussians, the maximum satisfies the classic scale [4]
My ~0\/2logN
up to lower-order corrections (e.g., of order g/ \/m ). If the extreme tail dominates, then
log Zp ~ PMy =~ Bo+/21og N.

Now, we solve for the critical inverse temperature . by matching bulk and maximum approximations.
The transition occurs when the bulk and max approximations are of the same order:

1
log N + §ﬁ202:ﬁ0\/210gN. (8)
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We rearrange and find a condition for when the expression vanishes:

1 1 1 2
0= — 202—/30\/210gN+10gN:502(ﬁ——\/210gN) .
o

2

This vanishes at exactly

BN, o) = 1 /a0, )

o
This is the critical inverse temperature for softmax condensation over N Gaussian logits, analogous to
the freezing transition in random energy models [3].
Now, let us show that the order parameter changes from vanishing to ©(1). Pick j* := argmax; U}, so
that Uj« = M. Then,
_exp(fMy)

Wmax = Wj* —Z—’B. (10)

When wpqx — 0, we are below criticality. Using the bulk approximation logZs =~ log N + %/3202 and

My =o+/2logN gives
1
Wmax = €XP (,BU\/ZlogN—logN— 5[3202 . (11)

Let us define the term inside the exponential as ®(f) and complete the square,

®(ﬁ)=—102(ﬁ—1\/210 N)Z:—EUQ(ﬁ—ﬁ )2<0
2 g VaoR 2 ) =5

A clean way to interpret the asymptotics is to compare ff to .. Fix £ € (0,1) and set f =t S.(N,0).
Then ®(B) = —(1- £)2 log N and wp,qy = N1 _, 0as N — co. In particular, for any fixed f = O(1)
and N — oo, we have /. — 0 and attention remains diffuse.

Now, let us consider the regime above criticality. When 8 > ., the partition function is no longer
controlled by the bulk of O(N) typical logits, but instead by the extreme tail. So only the largest few U;
contribute appreciably to

N
Zg= Z exp(BU;).
j=1
Although the top logit My = max; U; is separated from the bulk by a gap of order y/log N, the near-
maximum spacings are much smaller (so we should not generally expect a deterministic single-winner
limit at fixed /B, > 1) [4]. Writing j* = argmax; U, we have the exact identity

w = exp(BMp) _ 1
mas Zﬁ.vzlexp(ﬁUj) 1+ . exp(-pMy -U;))’

For > B., the sum receives non-negligible contributions only from a finite number of near-maximum
logits, and one enters the condensed phase where w4, is order one. In the deeper low-temperature
limit B/B. — oo, softmax approaches a hard argmax and w,q, — 1.

1

=0(1), B> Pe. (12)

Wmax =
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Thus, the toy model exhibits a condensation crossover at the N-dependent scale .: under the scaling
B =tB.(N,o0), the maximum weight changes from vanishing to @(1) at ¢ > 1.

Let us substitute in Transformer variables and explore dependence on N and d. Recall that o2 = ||¢|1%/d.
If q is typical isotropic with [|g[|% = d (e.g., by norm concentration for large d), then o =~ 1 and

Bec(N) = v/2log N (13)

for a single attention head with Gaussian-like logits. If we remove the Transformer scaling and instead
use logits U; = quj, then 02 ~ ||q||2 ~d, so

[2log N
Be = d

For any fixed = O(1), large d would push far above S, resulting in trivial collapse driven by noise

extremes. This is one reason the d V2 factor is essential: it keeps logit variance O(1) across head
sizes. In addition, the original Transformer motivation emphasizes gradient stability: without scaling,
dot products grow in magnitude with dj, pushing softmax into saturation and producing very small
gradients [1].

If one key has a deterministic advantage m> while the others are U 7 ~N(, 02), then the target weight

is
exp (ﬁm)

T exp (fm) +Z§V:2 exp (BU;)

Successful retrieval occurs when the signal advantage outcompetes the noise floor, but the sharp

(14)

condition depends on the phase.
In the diffuse (bulk) regime, logzyz 9 ePUi =1logN + % B%a2, so

1
Wy = exp ﬁm—logN—§ﬁ2a2 .

Thus w, remains non-negligible only if

logN 1
m2%+§ﬁ02.

In the condensed (extreme) regime, Zﬁ.v: 5 €xp(pU;) is dominated by a finite number of near-maximal
noise logits, and the relevant comparison is to M
1
Wy = .
1+exp(B(My —m))-O(1)

Thus, retrieval requires m to exceed the top noise level by at least an O(1/f) margin. In the hard-argmax
limit B/B. — oo, this reduces to the extreme-value inequality

m>0o4/2logN,

i.e. the signal must beat the noise maximum. When this inequality fails, we have condensation on noise:
increasing f sharpens the argmax foward the largest noise key, producing a “hallucination” winner.
When it holds, we have condensation on signal: the target key captures most of the attention mass.

3the target logit = m.
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