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Abstract

In this brief note, we study a toy scaled dot-product attention model with Gaussian logits and a
softmax inverse temperature β. Matching the bulk log-sum-exp scale of log Zβ with the extreme-
value scale of the maximum logit yields an N-dependent condensation crossover βc(N,σ) =
σ−1√

2log N . Under the scaling β = tβc , wmax → 0 for t < 1 while wmax = Θ(1) for t > 1,
approaching 1 only when β/βc →∞. Because, βc →∞ with N , fixed β=O(1) remains diffuse as
N →∞, and the Transformer’s d−1/2 scaling can be read as keeping logit variance O(1) to avoid
trivial noise-driven condensation.

Let us define a toy attention model. Let N be the sequence length (the number of competing keys). Let
d denote the head dimension dk (the dimension of q and each key k j within one head).1 Lastly, we
define inverse temperature β≥ 0, a softmax sharpness. Let the query be a (possibly random) vector
q ∈Rd . Let the keys be k1, . . . ,kN ∈Rd . Using this, let us define scaled dot-product logits:

U j := 1p
d

qT k j, j = 1, . . . , N, (1)

and define softmax attention weights

w j := exp
(
βU j

)∑N
ℓ=1 exp

(
βUℓ

) ,
N∑

j=1
w j = 1, w j ≥ 0. (2)

With this, let us define the partition function

Zβ :=
N∑
ℓ=1

exp
(
βUℓ

)
. (3)

We wish to examine attention collapse. A clean order parameter is the maximum attention weight

wmax := max
j∈[N]

w j. (4)

A diffuse attention would result in the maximum attention weight vanishing as N →∞2. A collapsed
attention means wmax =Θ(1), with wmax → 1 only in a deep low-temperature limit where softmax

approaches a hard argmax. We will show a sharp threshold in β separating these regimes.
Assume the keys are i.i.d. standard Gaussian k j

i.i.d.∼ N(0, Id) and q is independent of {k j}. First, let us
condition on q. Because k j is normally distributed,

qT k j | q ∼N(0,∥q∥2) =⇒ U j | q ∼N(0,σ2),
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1Note that d need not be equal to the model/embedding dimension dm .
2often on the order of log N/N rather than 1/N
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with the conditional variance defined as σ2 := ∥q∥2/d. Moreover, conditional on q, the U j are i.i.d. Let
MN :=max j∈[N] U j . Then, always,

exp
(
βMN

)≤ Zβ ≤ N exp
(
βMN

)
. (5)

Taking logarithms, we arrive at

βMN ≤ log Zβ ≤βMN + log N.

This is simply because the largest term is at most the sum, and the sum is at most N times the largest
term. A sharp finite-size crossover emerges from a competition. In the bulk regime, many terms
contribute to Zβ. In the maximum regime, a finite number of extreme terms dominate Zβ.
It is useful to separate annealed and quenched log-partitions. Define

Aβ := log E
[
Zβ | q

]
, Qβ := E[ log Zβ | q

]
.

By Jensen, Qβ ≤ Aβ. We compute the annealed partition function using the moment

E[Zβ | q]= NE[exp
(
βU

)
]= N exp

(
1
2
β2σ2

)
, U ∼N(0,σ2),

so
Aβ = log N + 1

2
β2σ2. (6)

To relate this to the typical (quenched) behavior of log Zβ, note that the map

(u1, . . . ,uN ) 7→ log
( N∑

j=1
eβu j

)
isβ-Lipschitz in the Euclidean norm: its gradient isβ(w1, . . . ,wN ), so ∥∇ log Zβ∥2 =β∥w∥2 ≤β. Hence,
conditional on q, standard Gaussian concentration for Lipschitz functions implies that log Zβ fluctuates
around Qβ by at most O(βσ) with overwhelming probability [5]. In the regime where log Zβ is order
log N , these fluctuations are lower-order. In the high-temperature (bulk) regime, standard random
energy model arguments (or a second-moment method) imply that Qβ = Aβ+ o(log N), i.e. annealed
and quenched free energies match at leading order [3]. Thus, in the bulk regime, Aβ is a correct log-scale
approximation for log Zβ:

log Zβ ≈ log N + 1
2
β2σ2. (7)

For N i.i.d. Gaussians, the maximum satisfies the classic scale [4]

MN ≈σ
√

2log N

up to lower-order corrections (e.g., of order σ/
√

log N). If the extreme tail dominates, then

log Zβ ≈βMN ≈βσ
√

2log N.

Now, we solve for the critical inverse temperature βc by matching bulk and maximum approximations.
The transition occurs when the bulk and max approximations are of the same order:

log N + 1
2
β2σ2 ≈βσ

√
2log N. (8)
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We rearrange and find a condition for when the expression vanishes:

0≈ 1
2
β2σ2 −βσ

√
2log N + log N = 1

2
σ2

(
β− 1

σ

√
2log N

)2
.

This vanishes at exactly

βc(N,σ)= 1
σ

√
2log N. (9)

This is the critical inverse temperature for softmax condensation over N Gaussian logits, analogous to
the freezing transition in random energy models [3].
Now, let us show that the order parameter changes from vanishing toΘ(1). Pick j∗ := argmax j U j , so
that U j∗ = MN . Then,

wmax = w j∗ =
exp

(
βMN

)
Zβ

. (10)

When wmax → 0, we are below criticality. Using the bulk approximation log Zβ ≈ log N + 1
2β

2σ2 and
MN ≈σ√

2log N gives

wmax ≈ exp
(
βσ

√
2log N − log N − 1

2
β2σ2

)
. (11)

Let us define the term inside the exponential as Φ(β) and complete the square,

Φ(β)=−1
2
σ2

(
β− 1

σ

√
2log N

)2
=−1

2
σ2 (

β−βc
)2 ≤ 0.

A clean way to interpret the asymptotics is to compare β to βc. Fix t ∈ (0,1) and set β = tβc(N,σ).
ThenΦ(β)=−(1− t)2 log N and wmax ≈ N−(1−t)2 → 0 as N →∞. In particular, for any fixed β=O(1)
and N →∞, we have β/βc → 0 and attention remains diffuse.
Now, let us consider the regime above criticality. When β > βc , the partition function is no longer
controlled by the bulk of O(N) typical logits, but instead by the extreme tail. So only the largest fewU j

contribute appreciably to

Zβ =
N∑

j=1
exp(βU j).

Although the top logit MN =max j U j is separated from the bulk by a gap of order
√

log N , the near-
maximum spacings are much smaller (so we should not generally expect a deterministic single-winner
limit at fixed β/βc > 1) [4]. Writing j∗ = argmax j U j , we have the exact identity

wmax := w j∗ = exp(βMN )∑N
j=1 exp(βU j)

= 1
1+∑

j ̸= j∗ exp(−β(MN −U j))
.

For β>βc , the sum receives non-negligible contributions only from a finite number of near-maximum
logits, and one enters the condensed phase where wmax is order one. In the deeper low-temperature
limit β/βc →∞, softmax approaches a hard argmax and wmax → 1.

wmax = 1
1+∑

j ̸= j∗ exp
(−β(MN −U j)

) =Θ(1), β>βc. (12)
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Thus, the toy model exhibits a condensation crossover at the N-dependent scale βc: under the scaling
β= tβc(N,σ), the maximum weight changes from vanishing to Θ(1) at t > 1.
Let us substitute in Transformer variables and explore dependence on N and d. Recall thatσ2 = ∥q∥2/d.
If q is typical isotropic with ∥q∥2 ≈ d (e.g., by norm concentration for large d), then σ≈ 1 and

βc(N)≈
√

2log N (13)

for a single attention head with Gaussian-like logits. If we remove the Transformer scaling and instead
use logits U j = qT k j , then σ2 ≈ ∥q∥2 ≈ d, so

βc ≈
√

2log N
d

.

For any fixed β= O(1), large d would push far above βc , resulting in trivial collapse driven by noise
extremes. This is one reason the d−1/2 factor is essential: it keeps logit variance O(1) across head
sizes. In addition, the original Transformer motivation emphasizes gradient stability: without scaling,
dot products grow in magnitude with dk , pushing softmax into saturation and producing very small
gradients [1].
If one key has a deterministic advantage m3 while the others are U j ∼N(0,σ2), then the target weight
is

w∗ =
exp

(
βm

)
exp

(
βm

)+∑N
j=2 exp

(
βU j

) . (14)

Successful retrieval occurs when the signal advantage outcompetes the noise floor, but the sharp
condition depends on the phase.
In the diffuse (bulk) regime, log

∑N
j=2 eβU j ≈ log N + 1

2β
2σ2, so

w∗ ≈ exp
(
βm− log N − 1

2
β2σ2

)
.

Thus w∗ remains non-negligible only if

m≳
log N
β

+ 1
2
βσ2.

In the condensed (extreme) regime,
∑N

j=2 exp(βU j) is dominated by a finite number of near-maximal
noise logits, and the relevant comparison is to MN :

w∗ ≈ 1
1+exp

(
β(MN −m)

) ·Θ(1)
.

Thus, retrieval requires m to exceed the top noise level by at least an O(1/β) margin. In the hard-argmax
limit β/βc →∞, this reduces to the extreme-value inequality

m >σ
√

2log N,

i.e. the signal must beat the noise maximum. When this inequality fails, we have condensation on noise:
increasing β sharpens the argmax toward the largest noise key, producing a “hallucination” winner.
When it holds, we have condensation on signal: the target key captures most of the attention mass.

3the target logit = m.
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