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“The universe is an enormous direct
product of representations of

symmetry groups.” – Steven Weinberg
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Preface

these notes are a work in progress. they will be updated throughout the semester.
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1 A Review of Quantum Information

1.1 Quantum States & Systems
A quantum system is a physical system with quantum-mechanical degres of freedom:

• positions and momenta of particles

• polarizations of photons

• spins of particles

Note that these degrees of freedoms can be discrete or continuous. We will discuss the spin of an electron.
There are two basis states, spin up and spin down. Each of these is assigned a vector in C2, the state space.

| ↑〉 =
(
1
0

)
, | ↓〉 =

(
0
1

)
.

By the superposition principle, a quantum state can be prepared in a state |ψ〉 =α| ↑〉+β| ↓〉, where α,β ∈C and
|α|2 + ∣∣β∣∣2 = 1. The state |ψ〉 is a pure state. The probabilities of finding an electron in spin-up or spin-down
states are given by

Pr (↑)=
∣∣〈↑ |ψ〉∣∣2 = |α|2 , Pr (↓)=

∣∣〈↓ |ψ〉∣∣2 = ∣∣β∣∣2 .

Formally, the state space of a quantum system is given by a Hilbert spaceH, a complete complex inner-product
space. We will be restricting our attention to finite-dimensional Hilbert spacesH∼=Cd .

Definition 1 (Observables). Observable quantities are represented by Hermitian operators

A ∈ {X ∈L(H) | X † = X }.

The real eigenvalues of A can be experimentally measured.

A state of a quantum system assigns an expectation value of observable; it describes the expected measurement
statistics of an observable in a quantum system. States are identified by density operators ρ ∈L(H) 1.

Definition 2 (Density Operators). A density operator ρ ∈L(H) satisifies
• ρ ⪰ 0, i.e., 〈φ|ρψ〉 ≥ 0 for all φ ∈H. (positivity)
• Trρ = 1. (normalization)

The expectation of an observable A with respect to a state ρ is given by

E[A]=Tr
(
Aρ

)
.

The set of density operators of a finite-dimensional Hilbert spaceH is denoted byD(H). This set is compact
and convex. That is, if ρ i ∈D(H) and λi are probabilities, then ρ =∑

iλiρ i ∈D(H).

1Here, L(H) denotes the space of linear operators onH.
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Definition 3 (Pure & Mixed States). A pure state is a density operator ρ ∈D(H) of the form

ρ = |ψ〉〈ψ|

for some normalized vector |ψ〉 ∈H. Mixed statesmust be written as a convex combination of pure states:

ρ =∑
i

pi|ψi〉〈ψi|

This collection of state vectors
{|ψi 〉

}
with probabilities {pi}i is a pure state ensemble for the mixed state ρ.

Every mixed quantum state has infinitely many pure-state ensembles to realize it. Every quantum state also has
a spectral decomposition with its eigenvalues and eigenvectors:

ρ =∑
i
λi|vi〉〈vi|

where λi are the eigenvalues and {|vi 〉} are an orthonormal basis of eigenvectors of ρ. By the definition of density
operators, we have that λi ≥ 0 and

∑
iλi = 1. Hence, the eigenvalues of a density matrix form a probability

distribution.

1.2 Measurements

Definition 4 (Projective Measurements). Let A be an observable on a quantum systemH with respect to
state ρ. Consider the spectral decomposition of A:

A =∑
α

xαPα

where xα are the eigenvalues of A and Pα are orthogonal projectors on their corresponding eigenspaces. These
projectors satisfy

• Pα ≥ 0, in particular, P†
α = Pα. (positive semi-definiteness)

• PαPβ = δα,βPα for all α,β. (orthogonality)
•

∑
αPα = 1. (completeness)

{Pα}α is called a projective measurement of A that gives the values xα with probabilities pα =Tr
(
Pαρ

)
.

Definition 5 (POVMs). A collection of operators {Ek}k with Ek ≥ 0 and
∑

k Ek = 1 is called a positive operator-
valued measure (POVM). For each effect operator Ek , the outcome k is measured with probability pk =Tr

(
Ekρ

)
.

POVMs are more general than projective measurements, as they do not require the effects to be orthogonal.

1.3 Entanglement & Composite Systems
Consider quantum systems A and B with respective Hilbert spaces HA and HB. The joint system AB is
described by the tensor product of the two Hilbert spaces HAB =HA ⊗HB. A density operator ρAB lies in
L (HA ⊗HB), which is isomorphic to L(HA)⊗L(HB).
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A marginal state ρA of a bipartite state ρAB is defined with the partial trace

Tr
(
ρA XA

)=Tr
(
ρAB (XA ⊗ 1B)

)
for all XA ∈ L(HA). The marginal state ρA is the state of system A when system B is ignored. Similarly,
we can define the marginal state ρB of system B. This uniquely defines the partial trace as a linear map
TrB :L(HAB)→L(HA). If {|e i 〉B}i is an orthonormal basis forHB , then

TrB XAB =
dimB∑
i=1

(1A ⊗〈e i|B) XAB (1A ⊗|e i 〉B) .

There can be various types of correlation between systems A and B. We distinguish them here.

(i) Product States: ρAB =ωA ⊗σB for states ωA and σB . For a product state, any local measurements (done
with partial traces) do not affect the other system. A and B are completely uncorrelated.

(ii) Separable States: ρAB =∑
i piω

(i)
A ⊗σ(i)

B for states ω(i)
A and σ(i)

B and a probability distribution {pi}i . Con-
ditioned on i, the state ω(i)

A ⊗σ(i)
B is uncorrelated.

(iii) Entangled States: ρAB cannot be written as a convex combination of product states. These states describe
quantum correlations that cannot be explained classically.

For example, consider C2 and its computational basis {|0〉, |1〉}. The state

Φ+ = |Φ+〉〈Φ+| = 1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


with |Φ+ 〉 = 1p

2
(|00〉+ |11〉) is the Bell state,2 is not separable. In fact, it isNP-hard to determine whether a given

mixed state is separable. However, for pure states there exists an efficient criterion based on the singular-value
decomposition.

Definition 6 (Schmidt Decomposition). Let |ψ〉AB be a pure bipartite quantum state. Then there exists sets
of orthonormal vectors {|e i 〉}r

i=1 and {| f j 〉}s
j=1 such that

|ψ〉AB =
r∑

i=1

p
λi|e i 〉A ⊗| f i 〉B

with strictly positive real λi . These are Schmidt coefficients and satisfy
∑r

i=1λi = 1. The integer r is the Schmidt
rank of |ψ〉AB.

Proposition 1. |ψ〉AB is entangled if and only if r > 1.

Proof. If r = 1, then the Schmidt decomposition gives |ψ〉AB =p
λ1|e1 〉A ⊗| f1 〉B , which is a product state and

2Also called the EPR state or the maximally-entangled state.



6

hence separable. Suppose for contradiction that |ψ〉AB is separable, so |ψ〉AB = |a 〉A ⊗|b 〉B for some states
|a 〉A and |b 〉B . This is already in Schmidt form with only one term, giving Schmidt rank r = 1. This contradicts
our assumption that r > 1. Therefore, |ψ〉AB must be entangled.

The marginals of |ψ〉AB are given by partial traces

ρA =TrBψAB =
r∑

i=1
λi|e i〉〈e i|A, ρB =Tr AψAB =

r∑
i=1

µ j| f i〉〈 f i|B.

These are spectral decompositions; ρA and ρB have the same spectrum given by the Schmidt coefficients and
the Schmidt vectors {|e i 〉A} and {| f i 〉B} are the eigenvectors of ρA and ρB , respectively. The entanglement of a
bipartite state can be quantified by the entanglement entropy, which we will discuss later.

Definition 7 (Purification). Let ρA ∈D(H) be a mixed quantum state. Any state |ψ〉AR ∈HA ⊗HR satisfying
TrRψAR = ρA whereHR is some auxiliary Hilbert space, is a purification of ρA .

Proposition 2. For a mixed state ρA , a purification exists onHA ⊗HR with dim HR ≥ rankρA .

Proof. Consider the spectral decomposition ρA =∑n
i=1λi|vi〉〈vi|A , where λi > 0 such that r = rankρA . Take

HR =Cr with orthonormal basis {|wi 〉R}r
i=1, then |ψ〉AR :=∑r

i=1

√
λi|vi 〉A⊗|wi 〉R is a purification of ρA .

Proposition 3. Let |ψ〉AR1 and |ϕ〉AR2 be two purifications of ρA . Without loss of generality, assume dim R1 ≤
dim R2. Then there exists an isometry V :HR1 →HR2 such that

|ϕ〉AR2 = (1A ⊗V ) |ψ〉AR1 .

Proof. This follows from the Schmidt decomposition.

1.4 Distance Measures
We require ways to analyze how close two quantum states are. Approximating states are commonly quantified
using these measures. We will focus on fidelity and the trace norm.

Definition 8 (Trace Norm). For a linear operator X ∈L(H), the trace norm is defined as

∥X∥1 =Tr
√

X †X =
d∑

i=1
Si(X ),

where d = dim H and Si(X ) are the singular values of X .

This defines a norm (in the standard analytical sense) on L(H). In the case when X is Hermitian with real
eigenvalues λi , we have ∥X∥1 =

∑
i |λi|.

Definition 9 (Trace Distance). Let ρ and σ be quantum states onH. Their trace distance is defined as

D(ρ,σ) := 1
2

∥∥ρ−σ∥∥
1 .
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We discuss some properties of the trace distance.

(i) D(·, ·) is non-negative, symmetric, and satisfies the triangle inequality, making it a metric.

(ii) D(·, ·) is bounded to the interval [0,1] and D(ρ,σ)= 0 if and only if ρ =σ. With suppX := (ker X )⊥, we
also have D(ρ,σ)= 1 if and only if suppρ⊥ suppσ.

(iii) D(ρ,σ)= D(UρU†,UσU†) for all unitaries U and D(ρA,σA)≤ D(ρAB,σAB).

(iv) D(ρ,σ)= sup
{
Tr

[
P(ρ−σ)

] | P ≥ 0 and 1−P ≥ 0
}
.

(v) D(ρ,σ) is related to the maximum probability of distinguishing ρ and σ.

Definition 10 (Fidelity). The fidelity F(ρ,σ) of quantum states ρ and σ is defined as

F(ρ,σ) := ∥∥pρpσ∥∥
1 =Tr

(
σ1/2ρσ1/2

)1/2
.

We discuss some useful properties of fidelity.

(i) F(·, ·) is bounded to [0,1] and F(ρ,σ)= 1 if and only if ρ =σ. F(ρ,σ)= 0 if and only if suppρ⊥ suppσ.

(ii) F(ρ,σ)= F(σ,ρ), but F is not a metric.

(iii) F(ρ,σ)= F(UρU†,UσU†) for all unitaries U and F(ρA,σA)≥ F(ρAB,σAB).

(iv) F is jointly concave:

F

(∑
i

piρ i,
∑

i
piσi

)
≥∑

i
piF(ρ i,σi).

(v) For pure states |ψ〉 and |ϕ〉, F(ψ,ϕ)= ∣∣〈ψ|ϕ〉∣∣.
Theorem 1 (Uhlmann’s Theorem). Let ρ and σ be quantum states onH. Then

F(ρ,σ)= sup
{∣∣〈ψ|ϕ〉∣∣ : |ψ〉 is a purification of ρ and |ϕ〉 is a purification of σ

}
.

Proof. Let the states act onHA . Fix an auxiliary spaceHR with dim HR ≥ dim HA and define the “canonical”
purifications via spectral decompositions

ρ =∑
i
λi|i〉〈i| ⇒ |ψρ 〉 :=∑

i

√
λi |i 〉A|i 〉R , σ=∑

j
µ j| j〉〈 j| ⇒ |φσ 〉 :=∑

j

√
µ j | j 〉A| j 〉R .

By the uniqueness of purifications up to isometry on R, every purification of ρ is of the form (1A⊗UR)|ψρ 〉 for
some unitary UR onHR . Hence〈

ψ
∣∣ϕ〉= 〈

ψρ

∣∣ (1A⊗UR)
∣∣φσ〉=∑

i, j

√
λiµ j 〈i| j〉︸︷︷︸

〈i| j〉
R〈i|UR | j 〉R︸ ︷︷ ︸

〈i|UR | j〉
=Tr(UR X ) ,
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where the operator onHR ∼=HA is

X :=∑
i, j

√
λiµ j 〈i| j〉 |i 〉_R〈 j| =p

ρ
p
σ.

The last equality is basis-free: it is exactly the matrix productpρpσ expressed in the eigenbases {|i 〉} and {| j 〉}.

We now maximize the absolute inner product over all unitaries UR and use the variational characterization of
the trace norm.

Lemma. For any operator X , sup
∣∣Tr(U X )

∣∣= ∥X∥1 , where U is any unitary.

Sketch. Let X =W |X | be the polar decomposition. Then Tr(W†X )=Tr |X | = ∥X∥1 and Hölder’s inequality
gives |Tr(U X )| ≤ ∥X∥1 for all U .

Applying the lemma with X =p
ρ
p
σ yields

sup
purifications |ψ〉,|ϕ〉

∣∣〈ψ|ϕ〉∣∣= sup
UR

∣∣Tr(UR
p
ρ
p
σ)

∣∣= ∥∥pρpσ∥∥
1 = F(ρ,σ),

which is exactly the desired identity, with the maximizing unitary given by the partial isometry from the polar
decomposition ofpρpσ. This also shows the supremum is attained.

Proposition 4 (The Fuchs-van de Graaf Inequalities). For any ρ,σ ∈D(H),

1−F(ρ,σ)≤ D(ρ,σ)≤
√

1−F(ρ,σ)2.

The proof of this can be found in [FvdG99].
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2 A Review of Representation Theory

Representation theory is the study of groups through group actions on vector spaces. We begin with establishing
some basic definitions.

2.1 Actions & Representations

Definition 11 (Group). A group (G, ·) is a set G equipped with a binary operation · : G×G →G satisfying
• Associativity: a · (b · c)= (a ·b) · c for all a,b, c ∈G.
• Identity: There exists an element e ∈G such that e · g = g · e = g for all g ∈G.
• Inversibility: For each g ∈G, there exists an element g−1 ∈G such that g · g−1 = g−1 · g = e.

Example 1. Given a field (F, ·,+), then (F,+) is a group 3.

Example 2. The collection of bijections from {1,2, . . . ,n} to itself is the symmetric group Sn.

Example 3. The set of invertible linear maps with entries on vector space V is the general linear group GL(V ).

We now define what it means for a group to act on a vector space.

Definition 12 (Group Action). An action on a group G on a set X is a map ϕ : G× X → X such that

ϕ(g,ϕ(h, x))=ϕ(gh, x) and ϕ(e, x)= x

for all g,h ∈G and x ∈ X .

Definition 13 (Representation). A representation (ϕ,V ) of a group G on a vector space V (over field F) is a
group homomorphism ϕ : G →GL(V ).

ϕ(g1 g2)=ϕ(g1)ϕ(g2) for all g1, g2 ∈G

A representation will always satisfy ϕ(e)= 1V and ϕ(g−1)=ϕ(g)−1 for all g ∈G. The dimension or degree of a
representation (ϕ,V ) is the dimension of the vector space V . In this course, we will deal with finite-dimensional
representations.

Example 4. Let G be a cyclic group of order d, generated by g. Let V = Cd with basis |0〉, |1〉, . . . , |d −1〉.
Consider a linear operator X on V defined by X |i 〉 = |i+1modd 〉 for all i. Then the map g 7→ X determines a
representation (ϕ,V ) of G. Another representation (ϕ′,V ) is defined by the map g 7→ Z where Z| j 〉 = w j| j 〉
for a primitive d-th root of unity.

The two representations defined above are essentially equivalent, as they both capture the same group structure
through different linear operators on the same vector space. We formalize this definition below.

3Throughout these notes, let F denote R or C
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Definition 14 (Isomorphism of Representations). Two representations (ϕ,V ) and (ϕ′,V ′) of a group G are
said to be isomorphic if there exists an invertible linear map (an isomorphism) ψ : V →V ′ such that

ϕ′(g)=ψ◦ϕ(g)◦ψ−1 for all g ∈G.

For example, the operator X corresponding to the shift |i 〉 7→ |[i−1](modd)〉 has eigenvalues e2πik/d for
k = 0,1, . . . ,d−1. Hence, if w = e2πi/d , a primitive root of unity, then the unitary U diagonalizing X satisfies

ϕ′ =U ◦ϕ◦U†.

Example 5. The trivial representation: ϕ(g)= 1F for all g ∈G.

Example 6. The regular representation of a finite group G: Let n = |G| and V ∼=Cn with basis {|g 〉}g∈G , then
the linear extension of the map ϕ(g) : |h 〉 7→ |gh 〉 to all of V is called the regular representation of G.

Conversely, let (ψ,W) be a representation such that there exists a w ∈W so that
{
ψ(g)(w)

}
g∈G is a basis for W .

Then, ψ is isomorphic to the regular representation.

Example 7. The permutation representation: Let X be a finite set and G be a group acting on X . Consider the
free vector space generated by X , V ∼=Cm, where m = |X | and {|x 〉}x∈X is a basis for V . The linear extension of
the map ϕ(g) : |k 〉 7→ |gx 〉 is the permutation representation of G on V .

2.2 Irreducible Representations & Decompositions
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