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Preface

These notes were compiled during the Spring 2025 semester for MATH 466: Applied Random Processes at the
University of Illinois at Urbana-Champaign. The course covers the fundamental theory and applications of
stochastic processes, with particular emphasis on Markov chains and their applications in modeling real-world
phenomena.

The material presented here builds upon basic probability theory to explore discrete-time and continuous-time
Markov chains, their long-run behavior, and computational methods for analysis. Special attention is given to
the Metropolis-Hastings algorithm and its role in modern computational statistics.

These notes, which closely followMarkov Chains by J.R. Norris, are intended as a supplement to, not a replace-
ment for, the assigned textbook and lecture materials. Any errors or omissions are my own.

Aniket Deshpande
August 2025
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1 Set Theory and Linear Algebra

Before we begin studying discrete and continuous-time Markov chains, we must develop our fundamentals in
set theory and matrix theory.

1.1 Sets and Sequences
We begin with a set S ⊆R and define two very important properties of sets: the supremum and infimum.

Definition 1.1.1 (Infimum and Supremum). Let S ⊆R be a non-empty set. The infimum of S is the greatest
lower bound of S, denoted by infS:

infS = sup{x ∈R : x ≤ s for all s ∈ S} (1)

The supremum of S is the least upper bound of S, denoted by supS:

supS = inf{x ∈R : x ≥ s for all s ∈ S} (2)

The well-ordering principle states that the infimum and supremum always exist in R. We also extend R to the
extended reals to include ±∞.

Definition 1.1.2 (Extended Real Numbers).We extend the real numbers as

R=R∪ {−∞,∞} (3)

This allows us to say, for some a,b ∈R with a < b

inf[a,b]= inf(a,b]= inf[a,b)= inf(a,b)= a

sup[a,b]= sup(a,b]= sup[a,b)= sup(a,b)= b

sup(a,∞)=∞ inf(−∞,b)=−∞
(4)

Example 1.1.1. Let∅ denote the empty set. Then inf∅=∞ and sup∅=−∞.

We now expand these definitions to sequences and their limits.

Definition 1.1.3 (Limit). Given a sequence (an)n∈N and a constant L ∈R

lim
n→∞an = L (5)

if and only if for every ε> 0, there exists N(ε) such that for all n ≥ N , |an −L| < ε.

We say that an →∞ if and only if for every M ∈R, there exists N(M) such that for all n ≥ N , an > M.

Similarly, an →−∞ if and only if for every M ∈R, there exists N(M) such that for all n ≥ N , an < M.

Note that a sequence (an)n∈N can diverge without approaching an infinity, for example an = (−1)n, an oscillating
sequence.
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Theorem 1.1.1 (Monotone Convergence Theorem on R). Let (an)n∈N be a sequence. If (an)n∈N is bounded
and monotonically increasing, then

lim
n→∞an = sup{an : n ∈N} (6)

If (an)n∈N is bounded and monotonically decreasing, then

lim
n→∞an = inf{an : n ∈N} (7)

Note that the limit of an exists if the limit of the supremum and infimum are equivalent. Additionally, we can
extend this definition of limits to the sets and sequences of them.

Given a sequence of sets An ⊆R, n ∈N, we define the limit of the unions and intersections as

∞⋃
n=1

An = {x : x ∈ An∃ n ∈N}

∞⋂
n=1

An = {x : x ∈ An∀ n ∈N}
(8)

We can think of unions as finding a "least upper bound" and intersections as finding a "greatest lower bound", or
at least develop some sort of analogy between the two. We now define limits to supremums and infimums of
sets.

Definition 1.1.4. limsup and liminf. Given a sequence of sets An ⊆R, n ∈N, we define the limit superior and
limit inferior as

lim sup
n→∞

An =
∞⋂

n=1

∞⋃
k=n

Ak lim inf
n→∞ An =

∞⋃
n=1

∞⋂
k=n

Ak (9)

This can be a struggle to gain some intuition on, so we will provide some examples.

Example 1.1.2. Consider the sequence of sets (An)n∈N where An = [ 1
n ,1] for all n ∈N. Then

lim sup
n→∞

An =
∞⋂

n=1

∞⋃
k=n

Ak =
∞⋂

n=1
[0,1]= (0,1]

lim inf
n→∞ An =

∞⋃
n=1

∞⋂
k=n

Ak =
∞⋃

n=1

[
1
n

,1
]
= {1}

(10)

Example 1.1.3. Consider the sequence of sets (An)n∈N where An = [0,1− (−1)n] for all n ∈N. Then

lim sup
n→∞

An =
∞⋂

n=1

∞⋃
k=n

Ak =
∞⋂

n=1
[0,2]= [0,2]

lim inf
n→∞ An =

∞⋃
n=1

∞⋂
k=n

Ak =
∞⋃

n=1
[0,1]= {0}

(11)
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Definition 1.1.5 (Power Set). Given a set E, the power set of E, denoted by 2E or P (E), is the set of all subsets
of E.

2E := {A : A ⊆ E} (12)

Note that the notation 2E is used to denote the cardinality of the power set of E. When |E| <∞, there is a
surjective correspondence between 2E and {0,1}|E|.

Thus, the cardinality of the power set of E is 2|E|, which is a very important result.

1.2 Fubini’s Theorem

Theorem 1.2.1 (Fubini’s Theorem). Given countable sets I and J and terms ai j ≥ 0, then

∑
i∈I

∑
j∈J

ai j =
∑
j∈J

∑
i∈I

ai j (13)

In other words, we can rearrange the summation of non-negative terms.

Proof. We can prove this by considering the double sum as a sum over the set I × J. Then, we can rearrange
the terms in the sum to obtain the desired result.

1.3 Linear Algebra
We begin with a formal defintion of a matrix.

Definition 1.3.1 (Matrix). A matrix is an array of numbers indexed by two countable sets. With the index sets
I, J, we denote a matrix A as

A = (ai j)i∈I, j∈J (14)

Matrix multiplication can be understood with the following summation

(AB)i j =
∑
k∈K

aikbk j (15)

The kth power of a matrix is defined inductively with Ak = Ak−1 A and A0 = I , the identity matrix. This leads
us to the defintions of eigenvalues and eigenvectors.

Definition 1.3.2 (Eigenvalues and Eigenvectors). Given a matrix A and a vector v, we say that v is an
eigenvector of A with eigenvalue λ ∈C if

Av =λv (16)

The set of all eigenvalues of A is called the spectrum of A, denoted spec(A).

spec(A)= {λ ∈C : ∃ v ̸= 0 such that Av =λv} (17)

Note that λ is an eigenvalue if and only if A−λI is not invertible, this is equivalent to the determinant of A−λI
being zero. This leads us to the characteristic polynomial of a matrix.
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Definition 1.3.3 (Characteristic Polynomial). Given a matrix A, the characteristic polynomial of A is defined
as

χA(λ)= det(A−λI) (18)

We now define the diagonalizabilty of a matrix, a process that uses eigenvalues.

Theorem 1.3.1. If a matrix A has n linearly independent eigenvectors, then A is diagonalizable. Then, we define
S as the matrix with the eigenvectors as columns and Λ as the diagonal matrix with the eigenvalues on the
diagonal. Then

A = SΛS−1 (19)

Note that powers of A can be computed with the diagonalization of A.

Ak = SΛS−1SΛS−1 · · ·SΛS−1 = SΛkS−1

Thus, a power of a diagonalizable matrix is a power on its eigenvalues. We now define a theorem that allows for
us to find approximations to eigenvalues when the characteristic polynomial is difficult to solve.

Theorem 1.3.2 (Gershgorin Circle Theorem). Given a matrix A with eigenvalues λ1,λ2, . . . ,λn and n discs
D i with center aii and radius Ri =∑

j ̸=i |ai j|, then

spec(A)⊆
n⋃

i=1
D i (20)

Proof. Let λ ∈ spec(A) and v be the corresponding eigenvector. We wish to prove that there exists an i such
that λ ∈ D i , the ith disk.

We pick the largest magnitude component of v, say vk. Thus, |vk| > 0, we can assume that vk > 0. Then
the ith equation of Av =λv is

λvi =
n∑

j=1
ai jv j = aiivi +

∑
j ̸=i

ai jv j (21)

Rearranging, we have

|λ−aii| ·vi =
∣∣∣∣∣∑j ̸=i

ai jv j

∣∣∣∣∣≤ ∑
j ̸=i

|ai j||v j| ≤
∑
j ̸=i

|ai j|vk = Rivk

Since vk > 0, we have λ ∈ Bi .

1.4 Some Measure Theory
Measure theory is an extension of real analysis that allows us to define the concept of a measure on a set. We
begin with the definition of a σ-algebra.
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Definition 1.4.1 (σ-algebras). Given a set E, a collection of subsets E is a σ-algebra if
1. ∅ ∈ E

2. A ∈ E =⇒ Ac ∈ E

3. A1, A2, . . . ∈ E =⇒ ⋃∞
n=1 An ∈ E

Note that using conditions 2 and 3, we can show that the intersection of countable sets is also in E .

The tuple (E,E ) is called a measurable space.

Given two σ-algebras E1 and E2, if E1 ⊆ E2, then we say that E2 is finer than E1 and E1 is coarser than E2.

Proposition 1.4.1. The power set of a set E, 2E , is a σ-algebra.

Proof. We can show that the power set of E satisfies the three conditions of a σ-algebra. Firstly,∅ ∈ 2E since
∅ ⊆ E. Secondly, if A ∈ 2E , then Ac ∈ 2E since Ac ⊆ E. Lastly, if A1, A2, . . . ∈ 2E , then

⋃∞
n=1 An ∈ 2E since⋃∞

n=1 An ⊆ E.

In fact, the power set of E is the largest σ-algebra on E. This is known as the trivial σ-algebra.

Definition 1.4.2 (Smallest σ-algebra). If E is a collection of subsets of a set E, then the smallest σ-algebra
containing E is the intersection of all σ-algebras containing E . This is denoted by σ(E ).

While these objects can seem rather abstract, we can motivate this with some examples.

Example 1.4.1. Let E = {1,2,3} and E = {{1}}. Then we find the smallest σ-algebra containing E as

σ(E )= {∅, {1}, {2,3}, {1,2,3}}

Consider another collection of subsets, B = {{1}, {2}}. Then the smallest σ-algebra containing B is

σ(B)= {∅, {1}, {2}, {1,2}, {3}, {1,3}, {2,3}, {1,2,3}}= 2E

Definition 1.4.3 (Partition). A partition Π of a set E is a collection of non-empty, disjoint subsets of E such
that ⋃

A∈Π
A = E (22)

In other words, Π is both exhaustive (covers all of E) and mutually exclusive (disjoint).

We now use some examples to demonstrate the relationship between partitions and generated σ-algebras.

Example 1.4.2. For a set E = {1,2,3} and partition Π= {{1}{2,3}}, we can generate the σ-algebra σ(Π) as

σ(Π)= {∅, {1}, {2,3}, {1,2,3}}
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Proposition 1.4.2. Given a partition Π= {E i}i∈I of a set E, the σ-algebra generated by Π is

σ(Π)=
{⋃

i∈I ′
E i : I ′ ⊆ I

}
(23)

Proof. We can show that the collection of sets on the right-hand side of the equation is a σ-algebra. Firstly,
∅=⋃

i∈∅ E i ∈σ(Π). Secondly, if A =⋃
i∈I ′ E i ∈σ(Π), then Ac =⋃

i∈I\I ′ E i ∈σ(Π). Lastly, if A1, A2, . . . ∈σ(Π),
then

⋃∞
n=1 An =⋃∞

n=1
⋃

i∈In E i =⋃
i∈⋃∞

n=1 In E i ∈σ(Π).
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2 Basics of Probability Theory

2.1 Probability and Measure
With our knowledge of measure theory, we are equipped to develop rigorous definitions in probability theory.

Definition 2.1.1 (Probability Measures). A measure on a measurable space (E,E ) is a function µ : E → [0,∞]
that satisfies the following properties:

1. µ(;)= 0.
2. For any countable collection of pairwise disjoint sets {A i}∞i=1, we have

µ

( ∞⋃
i=1

A i

)
=

∞∑
i=1

µ(A i). (24)

The triple (E,E ,µ) is called a measure space. If µ(E)= 1, then µ is called a probability measure.

We now introduce some standard notation in measure-theoretic probability theory.

Definition 2.1.2 (Probability Space). A probability space is a triple (Ω,F ,P).
1. Ω is a set of outcomes.
2. F is a σ-algebra of events.
3. P is a probability measure on (Ω,F ).

Example 2.1.1. LetΩ= {1,2,3,4,5,6} be the set of outcomes of a fair six-sided die. Let F = 2Ω be the power
set ofΩ. Define P : F → [0,1] by

P(A)= |A|
6

, (25)

where |A| denotes the cardinality of A. Then (Ω,F ,P) is a probability space.

Generally, given a setΩ= {1,2,3, . . . ,n}, we can define the probability measure P by

P(A)= |A|
n

. (26)

A probability space (Ω,F ,P) has outcomes ω ∈Ω and events A ∈F .

Theorem 2.1.1 (Properties of Probability). Given a probability space (Ω,F ,P)
1. P(;)= 0.
2. For some A ∈F , we have P(A)= 1−P(Ac).
3. For any A,B ∈F , we have P(A∪B)=P(A)+P(B)−P(A∩B).

2.2 Random Variables

Definition 2.2.1 (Random Variables). Given a probability space (Ω,F ,P) and a measurable space (E,E ), an
E-valued random variable is a measurable function X :Ω→ E.

X−1(A) ∈F for all A ∈ E . (27)
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A special case of this definition is if E is countable, then X :Ω→ E is a (2E,F )-measurable RV if and only if
X−1(A) ∈F for all A ⊆ E.

Definition 2.2.2 (Probability Mass Function). The probability mass function (pmf) or distribution of a random
variable X is a function pX : E → [0,1] defined by

pX (x)=P(X = x)=P ({ω ∈Ω : X (ω)= x}) . (28)

This is best described with an example.

Example 2.2.1 (Two Fair Coins.). Consider two fair coins with the set of outcomesΩ= {HH,HT,TH,TT}.
Let X be the random variable representing the number of heads in two tosses, with E = {0,1,2}. Then, X is a
(2E,2Ω)-measurable RV. The pmf of X is

pX (x)=P(X = x)=
1

4 x ∈ {0,2}
1
2 x = 1

. (29)

2.3 Conditional Probability
The notion of a conditional probability is the probability of an event A given that another event B has occurred.
This is denoted by P(A|B).

Definition 2.3.1 (Conditional Probability). Given a probability space (Ω,F ,P) and events A,B ∈F with
P(B)> 0, the conditional probability of A given B is

P(A|B)= P(A∩B)
P(B)

. (30)

Theorem 2.3.1 (Law of Total Probability). Given a probability space (Ω,F ,P) and events B1,B2, . . . ,Bn ∈F

that form a partition ofΩ, we have

P(A)=
n∑

i=1
P(A|Bi)P(Bi). (31)

Definition 2.3.2 (Conditional Random Variables). LetΩ be a countable set and Π= {Ωi, i ∈ I} is a partition
ofΩ. Denote F =σ(Π), or the σ-algebra generated by Π. Let P be a probability measure on the space (Ω,F ).

Given a σ-algebra B ⊆ E and an event A ∈ E , the conditional probabilty of A given B is a random
variable that is constant on each E i .

P(A|B)(ω) :=P(A|E i) for ω ∈ E i. (32)

Example 2.3.1 (Two Fair Coins). LetΩ= {HH,HT,TH,TT} be the set of outcomes of two fair coins with
F = 2Ω and P(A)= |A|

4 for any A ∈F . Let B = {∅, {HH,HT}, {TT,TH},Ω}. The partition E1 = {HH,HT}
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and E2 = {TT,TH} generate B.

P(A|B)(ω)=
P(A|{HH,HT}) ω ∈ {HH,HT}

P(A|{TT,TH}) ω ∈ {TT,TH}
(33)

If A = {HH}, then

P(A|B)(ω)=
1

2 ω ∈ {HH,HT}

0 ω ∈ {TT,TH}
. (34)

2.4 Expectation
We now define expected values or expectations of random variables.

Definition 2.4.1 (Expectation). Given a random variable X :Ω→ I with I ⊂R, the expectation of X is

E[X ]= ∑
ω∈Ω

X (ω)P(ω)= ∑
x∈I

xP(X = x). (35)

Proposition 2.4.1. The expectation of a random variable is linear.

E

(
n∑

i=1
ai X i

)
=

n∑
i=1

aiE[X i]. (36)

Proof. Let X =∑n
i=1 ai X i . Then

E[X ]= ∑
ω∈Ω

X (ω)P(ω)= ∑
ω∈Ω

(
n∑

i=1
ai X i(ω)

)
P(ω)=

n∑
i=1

ai
∑
ω∈Ω

X i(ω)P(ω)=
n∑

i=1
aiE[X i].

Example 2.4.1. Consider X1, . . . , Xn as random variables taking values in the set {0,1}. The probabilities are
uniform.

P(X i = 0)=P(X i = 1)= 1
2

.

Our set of outcomes isΩ= {0,1}n, and for some event A ∈F , we have

P(A)= |A|
2n .

Let Y =∑n
i=1 X i . Then to predict Y , we have

E[Y ]= E
(

n∑
i=1

X i

)
=

n∑
i=1
E[X i]= n

2
.
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Definition 2.4.2 (Independence). Two random variables are independent if and only if

P(X = x,Y = y)=P(X = x)P(Y = y) ∀ x, y. (37)

Note that this implies that for independent random variables X and Y , we have

E[XY ]= E[X ]E[Y ]. (38)

The converse however, is not true. That is, if E[XY ]= E[X ]E[Y ], then X and Y are not necessarily independent.

Definition 2.4.3 (Conditional Expectation). Given a random variable X :Ω→ I and an event B ∈F with
P(B)> 0, the conditional expectation of X given B is

E(X |B)= ∑
i∈I

i P(X = i|B)=
∑

i∈I i P({X = i}∩B)
P(B)

(39)

Definition 2.4.4 (Conditional Expectation on σ-algebras). Given a random variable X :Ω→ I and a σ-
algebra B ⊆F generated by a countable partition Π= {E i, i ≥ 1} ofΩ. The conditional expectation of X given
B is a piecewise constant random variable.

E(X |B)(ω)= E(X |E i) for ω ∈ E i. (40)

Proposition 2.4.2. If B =σ(∅), then E(X |B)= E(X ).

Proof. Note that σ(∅)= {∅,Ω}. Then the conditional expectation takes the form.

E(X |B)(ω)=
E(X |∅) ω ∈∅
E(X |Ω) ω ∈Ω

. (41)

Since ω ∈∅ is a contradiction, we have E(X |B)= E(X |Ω)= E(X ).

Example 2.4.2.We will use the same example ofΩ= {0,1}n with X1, . . . , Xn as random variables taking values
in {0,1}. The probabilities are uniform.

P(X i = 0)=P(X i = 1)= 1
2

.

Then, the partition Π= {E1 = {0},E2 = {1}} generates B =σ(Π). The conditional expectation of X1 given B is

E(X1|B)(ω)=
E(X1|E1) ω ∈ E1

E(X1|E2) ω ∈ E2
.
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If X1 = 1, then

E(X1|B)(ω)=
1

2 ω ∈ E1

1
2 ω ∈ E2

.

Qualitatively, this is an expectation of X given whatever information B provides. Note that P(A|B) and E(A|B)
are both scalars. But when the conditioning object is a σ-algebra, the conditional expectation is a random
variable.

Proposition 2.4.3. If X is measurable with respect to B, then E(X |B)= X .

Proof. Let X be measurable with respect to B. Then X is constant on each E i . Thus, E(X |E i)= X for all i.
Therefore, E(X |B)= X .

Example 2.4.3. The trivial σ-algebra B0 = {∅,Ω} has partition Π= {Ω}.

E(X |B0)(ω)= E(X |Ω)= E(X ). (42)

as ω ∈Ω for all ω and B provides no information. Conversely, consider the finest σ-algebra B f = 2Ω and the
partition it generates Π= {E i = {ωi},ω ∈Ω}.

E(X |B f )= E(X |{ωi})=
∑

i
i P(X = i|{ωi})= X (ω). (43)

Therefore, E(X |B f )= X , random variables given the most information.

Theorem 2.4.1 (Law of Total Expectation). On a probability space (Ω,F ,P), given a σ-algebra B ⊆F and a
random variable X :Ω→ I , we have

E(X )= E(E(X |B)). (44)

Proof. Construct a partition Π= {E j, j ≥ 1} ofΩ that generates B.∑
j
E(X |E j)P(E j)=

∑
j

∑
i

i P(X = i|E j)P(E j)=
∑

i
i
∑

j
P(X = i|E j)P(E j)=

∑
i

i P(X = i)= E(X ).

2.5 Filtrations
Filtrations are sequences of σ-algebras that represent the information available at each time step.

Definition 2.5.1 (Filtration). Given a probability space (Ω,F ,P), a filtration is a sequence of increasing
σ-algebras onΩ giving more/finer information.

F0 ⊆F1 ⊆F2 ⊆ . . .⊆Fn ⊆ . . .⊆F . (45)

Example 2.5.1. Consider n random variables X1, . . . , Xn on a probability space (Ω,F ,P). The filtration Fn
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takes the form:
Fn =σ(X1, . . . , Xn).

Making F0 =σ(∅), F1 =σ(X1), F2 =σ(X1, X2), and so on.

2.6 Moments and the Generating Function
Before we define moments, we must define a vital measure of the spread of a random variable.

Definition 2.6.1 (Variation). The variation of a random variable X is

Var(X )= E[(X −E[X ])2]= E[X2]−E[X ]2. (46)

This is, qualitatively, a measure of the spread of X .

Definition 2.6.2 (Moments). For a natural number k ∈ N, the k-th moment of a random variable X on a
probability (Ω,F ,P) is E(X k).

Definition 2.6.3 (Moment Generating Function). The moment generating function of a random variable X is

MX (t)= E[etX ]. (47)

The reason this function generatesmoments is that the k-th derivative of MX (t) at t = 0 is the k-th moment of
X .

M(k)
X (0)= E[X k]. (48)
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3 Discrete-Time Markov Chains

3.1 The Definition
The figure below describes aMarkov Chainwith three states. The numbers in the circles represent the states, and
the arrows represent the probabilities of transitioning from one state to another. For example, the probability
of transitioning from state 1 to state 2 is 1

3 .

1

2 3

1
6

1
3

1
21

3

2
3

1
2

1
2

Note that these processes are memoryless, meaning that the probability of transitioning to a state depends only
on the current state and not on the history of the process. This is known as theMarkov Property.

List most things in stochastic theory, these processes can be represented using matrices.

Definition 3.1.1 (Stochastic Matrix). Let P = (Pi j)n
i, j=1 be a square matrix with non-negative entries.

1. P is stochastic if
n∑

j=1
Pi j = 1 for all i = 1,2, . . . ,n (49)

2. P is sub-stochastic if
n∑

j=1
Pi j ≤ 1 for all i = 1,2, . . . ,n (50)

3. P is doubly stochastic if P and PT are both stochastic.

Example 3.1.1. Let us construct the stochastic matrix for the figure shown above. There are three states, so the
matrix will be 3×3. The matrix is given by

P =


1
6

1
3

1
2

0 1
3

2
3

0 1
2

1
2


Here, the i j-th entry of the matrix is the probability of transitioning from state i to state j. The rows of the
matrix sum to 1, so the matrix is stochastic.

Example 3.1.2. DO THIS EXAMPLE.
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Theorem 3.1.1. Given a Markov chain, the probability of transitioning from state i to state j in k steps happens
with probability q(k)

i j , where q(k)
i j is the i j-th entry of the matrix Pk .

Lemma 3.1.1. If P and Q are stochastic matrices, then PQ is also a stochastic matrix.

Proof. Let P and Q be stochastic matrices. Then, for all i = 1,2, . . . ,n,

n∑
j=1

(PQ)i j =
n∑

j=1

n∑
k=1

PikQk j =
n∑

k=1
Pik

n∑
j=1

Qk j = 1

Therefore, PQ is a stochastic matrix.

If it wasn’t obvious before, we use weighted graphs to represent Markov chains. We define some basic terms
from graph theory to aid us in our representations.

Definition 3.1.2 (Paths and Cycles). Given a directed graph G = (V ,E), a path is a sequence of edges
{e1, e2, . . . , en} such that the end vertex of e i is the start vertex of e i+1. A cycle is a path where the start
and end vertices are the same.

Proposition 3.1.1. If P is a stochastic matrix, then Pk is also a stochastic matrix for all k ∈N.

Proof. Using the previous lemma, we can show that P2 is a stochastic matrix. By induction, we can show that
Pk is a stochastic matrix for all k ∈N.
Theorem 3.1.2. Let P be a stochastic matrix. Then we have the following properties.

1. spec(P)⊂ B1, where B1 is the unit ball in C centered at 0. In other words, the eigenvalues of P are all
within the unit circle.

2. If Pii > 0 for all i = 1,2, . . . ,n, then spec(P)⊂ B1 ∪1. In other words, the eigenvalues of P are all within
the unit circle and include 1.

Definition 3.1.3 (Diagonalization of Stochastic Matrices). Suppose we have a stochastic matrix P with
spectrum spec(P)= {λ1,λ2, . . . ,λn}. Then, P can be diagonalized as

UPU−1 = D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 (51)

for some invertible matrix U . Note that for an arbitrary power of P , we have

Pk =UDkU−1 =U


λk

1 0 · · · 0
0 λk

2 · · · 0
...

...
. . .

...
0 0 · · · λk

n

U−1 (52)
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So, the spectrum of a stochastic matrix will determine the long-time behavior of the Markov chain. With this,
we continue to some formal definitions.

Definition 3.1.4 (Stochastic Process). Given a probability space (Ω,F ,P), an index set I and a countable set
T , a discrete-time stochastic process is a collection of random variables {X t : t ∈T }, where each X t is defined by

X t : (Ω,F ,P)→ I (53)

for each t ∈T . I is defined to be the state space and T is the time domain.

Definition 3.1.5 (Markov Process). Consider a discrete-time stochastic process (X t)t≥0 defined on (Ω,F ,P).
The process is said to be aMarkov process with initial distribution λ and transition matrix P if

1. X0 ∼λ.
2. P(X t+1 = j|X t = i, X t−1 = i t−1, . . . , X0 = i0) = P(X t+1 = j|X t = i), implying that the probability of

transitioning to a state at time t+1 depends only on the state at time t.
We will use the notation (X t)t≥0 ∼Markov(λ,P) to denote a Markov process with initial distribution λ and
transition matrix P .

If p′
i js are independent of time (making P time-independent), then theMarkov process is said to be homogeneous.

Note that a stochastic process is a function of two variables and could be notated as X (t,ω). However, we will
use the standard notation of X t(ω), as we think of the two variables differently. The first variable is the time
index, and the second variable is the sample point.

Example 3.1.3 (Lazy RandomWalk). ConsiderZ, the set of integers and aMarkov chain (X t)t≥0. The random
variables take values in Z (I =Z). Consider an initial distribution of X0 = 1. The value of the random variable
in the next step increases by 1 with probability 1/4, decreases by 1 with probability 1/4, and remains the same
with probability 1/2. The elements of the transition matrix are given below.

pi j =



1/4 if j = i+1

1/2 if j = i

1/4 if j = i−1

0 otherwise

This process is called a lazy random walk on Z. The term "lazy" arises from the fact that the process remains in
the same state with probability 1/2.

-2 -1 0 1 2

1
4

1
2

1
4

1
4
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Example 3.1.4 (Pattern Recognition). Consider a sequence (Yt)t≥0
i.i.d.∼ Bernoulli(p) where Y0 = 1 with

probability p and Y0 = 0 with probability 1− p. Now, we define random variables X t as follows.

X0 = (Y0,Y1), X1 = (Y1,Y2), X t = (Yt,Yt+1) for t ≥ 1

The random variable X t then takes values in I = {0,1}2.

00 01

10 11

1− p

p

1− p

p
1− p

1− p

1− p

1− p

p

p1− p

p

We can now construct the transition matrix for this process. The matrix is given by

P =


1− p p 0 0
1− p 0 p 0

0 1− p 0 p
0 0 1− p p



3.2 Some Properties

Theorem 3.2.1. Given some initial distribution λ and transition matrix P on a countable set I , (X t)t≥0 ∼
Markov(λ,P) if and only if,

P(X0 = x0, . . . , Xn = xn)=λx0 Px0x1 · · ·Pxn−1xn (54)

where x0, x1, . . . , xn ∈ I .

Proof. (=⇒ ) We begin with assuming that (X t)t≥0 ∼Markov(λ,P). We can write the joint distribution of the
random variables as

P(Xn = xn | X0 = x0, . . . , Xn−1 = xn−1)= P(X0 = x0, . . . , Xn = xn)
P(X0 = x0, . . . , Xn−1 = xn−1)

= λx0 Px0x1 · · ·Pxn−1xn

λx0 Px0x1 · · ·Pxn−2xn−1

The final line simplifies to Pxn−1xn , which is the probability of transitioning from state xn−1 to state xn. This
implies that the process is a Markov process.

(⇐= ) We now assume that the joint distribution of the random variables is given by the expression in the



19

theorem. We can write the conditional probability P(X0 = x0, . . . Xn = xn) as

P(Xn = xn | X0 = x0, . . . , Xn−1 = xn−1) ·P(X0 = x0, . . . , Xn−1 = xn−1)

= Pxn−1xn ·λx0 Px0x1 · · ·Pxn−2xn−1

=λx0 Px0x1 · · ·Pxn−1xn

This recursive property implies that the process is a Markov process.

Definition 3.2.1 (Conditional Probabilities). Given a probability space (Ω,F ,P) and a Markov chain
(X t)t≥0 ∼Markov(λ,P), the conditional probability of the process is given by

Pi(A)=P(A | X0 = i) (55)

where A ∈F . The conditional probability is a probability measure on the probability space (Ω,F ,P).

Definition 3.2.2 (DiracMeasure).We can define theDirac measure δx as a probability measure on a probability
space (Ω,F ,P) such that

δx(A)=
1 if x ∈ A

0 otherwise
(56)

Proposition 3.2.1. For a Markov chain (X t)t≥0 ∼Markov(δx,P),

P=Px

Proof. We can write the conditional probability with some A ∈F as

Px(A)=P(A | X0 = x)

Here, X0 ∼ δx. By definition of the Dirac measure, P(X0 = x)= 1. Therefore, we have

Px(A)=P(A | X0 = x)= P(A, X0 = x)
P(X0 = x)

=P(A)

This implies that P=Px for all A ∈F .

Proposition 3.2.2. Given a Markov chain (X t)t≥0 ∼Markov(λ,P), we have the two properties below.

(I) P(Xn = i)=λPn
i

(II) P(Xn = j | X0 = i)= Pn
i j
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Proof. We can write the joint distribution of the random variables as

P(Xn = i)= ∑
xn−1

∑
xn−2

· · ·∑
x0

λx0 Px0x1 · · ·Pxn−1xn

= ∑
xn−2

· · ·∑
x0

λPx0x1 · · ·
( ∑

xn−1

Pxn−1xn

)
=λPn

i

This proves the first property. The proof of the second property is as follows.

P(Xn = j | X0 = i)= P(Xn = j, X0 = i)
P(X0 = i)

=
∑

xn−1 · · ·
∑

x0 λx0 Px0x1 · · ·Pxn−1xn

λi
= Pn

i j

Lemma 3.2.1. Let (X t)t≥0 ∼Markov(λ,P) be a Markov chain. Then, (Xα+βt)t≥0 ∼Markov(λPα,Pβ) is also a
Markov chain for all α,β ∈N.

3.3 Hitting Time
The hitting time of a Markov chain is the time it takes for the process to reach a certain state. We define the
hitting time formally below.

Definition 3.3.1 (Hitting Time). Let (X t)t≥0 ∼Markov(λ,P) take values in I and denote A ⊆ I . We define the
hitting time of A, denoted by HA , as follows.

HA := inf {n ≥ 0 | Xn ∈ A} (57)

We denote the hitting time of A given an initial state i ∈ I as HA
i .

Note that the hitting time of a set A is a random variable that takes values in {1,2,3, . . .}∪ {∞}. We can denote
the probability that the process hits A with hA .

hA =P(HA <∞)

We also consider the probability of finite hitting times given an initial state i ∈ I .

hA
i =P(HA <∞ | X0 = i)=Pi(HA <∞)

With the law of total probabilities, we can say that hA =∑
i∈I λihA

i .

Theorem 3.3.1. The finite hitting time probabilities (hA
i )i∈I are the unique solution to the system of equationshA

i = 1 if i ∈ A

hA
i =∑

j∈I Pi jhA
j if i ∉ A

(58)

Additionally, (hA
i )i∈I is the smallest non-negative solution of the system of equations.
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Note that we can develop a trivial solution to this system if we have another non-negative solution (xi)i∈I such
that xi := 1 for all i. This is not a minimal solution, but it guarantees its existence.

Proof. We first prove that the finite hitting time probabilities satisfy the system. If i ∈ A, then since HA
i = 0, we

get hA
i = 1.

Let i ∉ A. Then, we need to perform at least one step before reaching A. This means we must compute
the marginal probability on the value of X1 to find

hA
i =P(HA <∞ | X0 = i)

=∑
j
P(HA <∞ | X1 = j, X0 = i)P(X1 = j | X0 = i)

=∑
j
P(HA <∞ | X1 = j)Pi j

=∑
j

hA
j Pi j by the Markov property.

Suppose now that (xi)i∈I is another non-negative solution. Then xi = hA
i = 1 for all i ∈ A. We pick some i ∉ A.

xi =
∑
j∈I

pi jx j =
∑
j∈A

pi j +
∑
j∉A

pi jx j.

Substituting for x j , we arrive at

xi =
∑

j1∈A
pi j1 +

∑
j1∉A

pi j1

( ∑
j2∈A

p j1 j2 +
∑

j2∉A
p j1 j2 x j2

)
= ∑

j1∈A
pi j1 +

∑
j1∉A, j2∈A

pi j1 p j1 j2 +
∑

j1∉A, j2∉A
pi j1 p j1 j2 x j2 .

The Gambler’s Ruin Problem

A gambler starts with k dollars and plays a game. Every round, he either loses or wins 1 dollar. He will play
until he has N dollars or loses all his money. We are interested in the probability of the latter event.

Let Xn be the gambler’s fortune after n rounds, and let p ∈ (0,1) is the fixed probability of winning a round.
Then, (Xn)n≥0 is a Markov chain with state space I = {0,1, . . . , N} and transition matrix P given by

Pi j =


p if j = i+1

1− p if j = i−1

0 otherwise
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where i ∈ {0,1, . . . , N −1}. Both 0 and N are called absorbing states, P00 = PNN = 1. The event A = {0} is the
event that the gambler loses all his money. We are interested in the hitting time of A.

hk =P(H{0} <∞ | X0 = k)

0 1 2 3 N

p p p

1− p 1− p

11

1− p

Above, is the transition diagram for the gambler’s ruin problem (N = 3). The gambler starts at state k and plays
until he reaches state 0 or state N . The gambler’s ruin problem is a special case of the lazy randomwalk problem.
We can solve the gambler’s ruin problem by solving the lazy random walk problem.

Since 0 ∈ A, h0 = 1. But, since X could never reach 0 if it starts at N , hN = 0. We can now solve for hi

for i ∈ {1,2, . . . , N −1}.
hi = phi+1 + (1− p)hi−1

This implies the following.

p(hi+1 −hi)= (1− p)(hi −hi−1) ⇐⇒ hi+1 −hi = 1− p
p

(hi −hi−1)

Define the parameter η := 1−p
p . We can now write the recursive equation as

hi+1 −hi = η(hi −hi−1)= . . .= ηi(h1 −h0)= ηi(h1 −1).

Now, sum over i to k−1.

hk−1 = (ηk−1 +ηk−2 + . . .+η+1)(h1 −1)=


1−ηk

1−η (h1 −1) if η ̸= 1

k(h1 −1) if η= 1

Since hN = 0, we obtain the following result.

h1 −1=
− 1−η

1−ηN if η ̸= 1

− 1
N if η= 1

=⇒ hk =
1− 1−ηk

1−ηN if η ̸= 1

1− k
N if η= 1

We can generalize the finite hitting time probabilities to the expected value of any non-negative function ϕ on
HA .

Theorem 3.3.2 (Mean Hitting Time). If i ∈ A, then HA = 0. If i ∉ A, for any function ϕ : {0,1, . . .}→ [0,∞),
we have

Ei[ϕ(HA)]= ∑
j∈I

pi jE j[ϕ(HA +1)] (59)
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Proof. Denote HA
i = HA(i, X1, X2, . . .). If i ∈ A, then HA

i = 0. If i ∉ A, note that at least one step has to be
taken.

HA(i, X1, . . .)= HA(X1, X2, . . .)+1

Applying ϕ on both sides and taking the expected value, we get

Ei[ϕ(HA)]= Ei[ϕ(HA(i, X1, X2, . . .))]= Ei[ϕ(HA(X1, X2, . . .)+1)]

= ∑
j∈I
Ei[ϕ(HA(X1, X2, . . .)+1)]Pi(X1 = j)

= ∑
j∈I

Pi jE j[ϕ(HA(X1, X2, . . .)+1)].

This completes the proof.

3.4 Stopping and Return Times
Recall the definition of a filtration; a sequence of σ-algebras (Ft)t≥0 is a filtration if Fs ⊆Ft for all s ≤ t. We
can define a stopping time with respect to a filtration.

Definition 3.4.1 (Stopping Time). Let T be a {0,1,2, . . . ,∞}-valued random variable. We say that T is a
stopping time with respect to a filtration (Ft)t≥0 if

{T = n} ∈Fn for all n ∈ {0,1,2, . . . ,∞}

We say T is a stopping time with respect to a process (X t)t≥0 if T is a stopping time with respect to the natural
filtration (Ft)t≥0 =σ(X0, X1, . . . , X t).

If for any time k, by observing X0, X1, . . . , Xk , we can determine whether or not T has occured before time k,
then T is a stopping time.

Example 3.4.1. The hitting time HA = inf {n ≥ 0 | Xn ∈ A} is a stopping time with respect to the natural
filtration (Ft)t≥0.

{HA = k}= {X0 ∉ A, X1 ∉ A, . . . , Xk−1 ∉ A, Xk ∈ A} ∈Fk.

Example 3.4.2. The return time RA = inf {n ≥ 1 | Xn ∈ A} is a stopping time with respect to the natural
filtration (Ft)t≥0.

{RA = k}= {X1 ∉ A, X2 ∉ A, . . . , Xk−1 ∉ A, Xk ∈ A} ∈Fk.

Example 3.4.3. The last return time LA = sup {n ≥ 0 | Xn ∈ A} is not a stopping time with respect to the natural
filtration (Ft)t≥0.

{LA = k}= {Xk ∈ A, Xk+1 ∉ A, Xk+2 ∉ A, . . .} ∉Fk.

Note that the event {LA = k} depends on the future values of the process.

Proposition 3.4.1. Recall that the hitting time of a set A given a Markov chain (X t)t≥0 ∼Markov(λ,P) is
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defined as
HA = inf {n ≥ 0 | Xn ∈ A}

We can claim that HA is a stopping time with respect to the natural filtration (Ft)t≥0.

Proof. Note that {HA ≤ n} can be written as the following union.

{HA ≤ n}=
n⋃

k=0
{Xk ∈ A} ∈Fn.

This implies that HA is a stopping time with respect to the natural filtration.

The first return time of a Markov chain is the time it takes for the process to return to a certain state.

Definition 3.4.2 (Return Time). Let (X t)t≥0 ∼Markov(λ,P) be a Markov chain. The return time of state i is
defined as

RA = inf {n ≥ 1 | Xn ∈ A} (60)

Note the difference between the hitting time and the return time. The hitting time is the time it takes to reach a
state, while the return time is the time it takes to return to a state.

Proposition 3.4.2. The last return time of a Markov chain is expressed below.

LA = sup {n ≥ 0 | Xn ∈ A}

This is not a stopping time.

Proof. The event {LA ≤ n} can be written as

{LA ≤ n}= {Xn ∈ A}∩
∞⋃

k=n+1
{Xk ∉ A} ∉Fn.

This implies that LA is not a stopping time.

The Markov property states that for each time t, conditional on X t = i, the process after t begins anew from
state i. Now, instead of conditioning on X t = i, let us wait for th process to hit a set A ⊂ I , at some random
time HA . What can we say about the process after time HA?

Let (Ω,F ,P) be a probability space. For a given filtration F0 ⊆ F1 ⊆ . . . ⊆ F , we can define the stopped
σ-algebra at time T .

Definition 3.4.3 (Stopped σ-Algebra). Let T be a stopping time with respect to a filtration Fn =
σ(X0, X1, . . . , Xn). The stopped σ-algebra at time T is a σ-algebra FT ⊆F .

A ∈ FT ⇐⇒ A∩ {T = n} ∈Fn for all n ≥ 0. (61)
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Proposition 3.4.3. FT is a σ-algebra.

Proof. We must show the three properties of a σ-algebra.

1. We have∅∩ {T = n}=∅ ∈Fn for all n ≥ 0. Therefore,∅ ∈ FT .

2. Suppose A ∈ FT . For all n ≥ 0, Ac ∩ {T = n|}= (A∩ {T = n})c ∈Fn. Therefore, Ac ∈ FT .

3. Given a sequence A i ∈ FT for all i ∈ N, we have that A i ∩ {T = n} ∈ Fn for all n ≥ 0. Therefore,⋃∞
i=1 A i ∩ {T = n} ∈Fn for all n ≥ 0. This implies that

⋃∞
i=1 A i ∈ FT .

Heuristically, FT is the information available in X0, X1, . . . up to a random time T .

Theorem 3.4.1 (The Strong Markov Property). Let (Xn)n≥0 ∼Markov(λ,P) be a Markov chain and T be a
stopping time.

1. Conditioned on {T <∞, XT = i}, the distribution of (XT+n)n≥0 is independent of FT .
2. Conditioned on {T <∞, XT = i}, (XT+n)n≥0 ∼Markov(δi,P).

The proof is omitted for brevity.

Consider the process (Xn)n≥0 ∼ Markov(λ,P) and some subset A ⊂ I . With A, we have almost sure finite
hitting time Pi(HA <∞)= 1. We can define the following sequence of random variables.

T0 = HA the first hitting time of A

T1 = inf {n ≥ 0 | Xn ∈ A} the first return time of A
...

Tk = inf {n ≥ Tk−1 +1 | Xn ∈ A} the k-th return time of A

Theorem 3.4.2. The random variables Tm are stopping times for all m ≥ 0.

Proof. We have a base case for T0 = HA , which we proved in Ex. 17. The proof is by induction. Suppose Tm−1

is a stopping time. We can write Tm as

Tm = inf {n ≥ Tm−1 +1 | Xn ∈ A}= inf {n ≥ 0 | Xn+Tm−1+1 ∈ A}.

This implies that Tm is a stopping time.

Recall the definition of return times or first passage times to A.

RA = inf {n ≥ 1 | Xn ∈ A}

This is a stopping time.
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Theorem 3.4.3. The discrete-time stochastic process (XT j ) j≥0 is a Markov chain with transition matrix P .

P̂i j :=Pi(XRA = j), i, j ∈ A.

The process (XT j ) j≥0 is called the trace process of (Xn)n≥0 on A.

Example 3.4.4. Let (Xn)n≥0 be a Markov chain with state space I = {0,1, . . . , N} with transition probabilities.

pi,i+1 = p, pi,i−1 = 1− p, i ∈ {1,2, . . . , N −1}

p0,1 = 1, pN,N−1 = 1, absorbing states

Here, p ∈ (0,1). With η := 1−p
p , we can write the hitting time as

qk :=Pk(hitting 0 before N)=
1− 1−ηk

1−ηN if p ̸= 1/2

1− k
N if p = 1/2

Let A = {0, N}. The trace process of (Xn)n≥0 on A is a Markov chain with transition probabilities

p0,0 = q1, p0,N = 1− q1, pN,0 = qN−1, pN,N = 1− qN−1.

Suppose p < 1/2 (η> 1) and consider the limiting case N →∞.

q1 = 1− η−1
ηN −1

∼ 1− 1
ηN −1

and qN−1 = 1− ηN−1 −1
ηN −1

≃ 1− 1
η

.

The Probability Generating Function

The probability generating function (PGF) is a power series representation of the probability mass function of a
discrete random variable.

Definition 3.4.4 (Probability Generating Function). LetY be a non-negative integer-valued random variable.
The probability generating function of Y is defined as

φY (t)= E[tY ]=
∞∑

k=0
tkP(Y = k), t ∈ [0,1]. (62)

It is clear that the mapping t 7→φY (t) is non-decreasing, φY (0)= 0, and φY (1)= 1. So, the function is bounded
by [0,1].

FINISH 05.

3.5 Class Structure
It is possible to break Markov chains into smaller chains that are easier to analyze. We do this by investigating
the communicating classes of a Markov chain.
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Definition 3.5.1 (Leading). Let (Xn)n≥0 be a Markov chain with state space I . We say that state i leads to state
j if the probability of reaching state j from state i in a finite number of steps is positive.

i → j =⇒ Pi(H{ j} <∞)> 0. (63)

We say i does not lead to j if i ↛ j.

i ↛ j =⇒ Pi(H{ j} =∞)= 1.

Lemma 3.5.1. Given a Markov chain (Xn)n≥0 ∼Markov(λ,P) with state space I . Then, for i, j ∈ I , i ̸= j, the
following are equivalent.

(i) i → j.
(ii) There exists a path from i to j in the corresponding weighted directed graph for P .
(iii) There exists an m ≥ 0 such that (Pm)i j > 0.

Proof. First, we prove that (i) implies (iii). Suppose i → j. Then, by definition,

0<Pi(H{ j} <∞)=
∞∑

m=0
Pi(H{ j} = m).

So, there exists an m ≥ 0 such that Pi(H{ j} = m)> 0. This implies the following.

(Pm)i j =Pi(Xm = j)≥Pi(H{ j} = m)> 0.

Now, we prove that (iii) implies (i). Suppose there exists an m ≥ 0 such that (Pm)i j > 0.

0< (Pm)i j =Pi(Xm = j)≤Pi(H{ j} <∞).

Definition 3.5.2 (Communicating).We say that states i and j communicate if i → j and j → i. In other words,
if i leads to j and j leads to i, then i ↔ j.

Proposition 3.5.1. The relation↔ is an equivalence relation.

Proof. We must show that↔ is reflexive, symmetric, and transitive.

(i) Reflexive: i → i since Pi(H{i} = 0)= 1.

(ii) Symmetric: If i → j, then there exists an m ≥ 0 such that (Pm)i j > 0. This implies that (Pm) ji > 0, so
j → i.

(iii) Transitive: If i → j and j → k, then there exists an m ≥ 0 such that (Pm)i j > 0 and an n ≥ 0 such that
(Pn) jk > 0. This implies that (Pm+n)ik =

∑
l∈I (Pm)il(Pn)lk > 0, so i → k.
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By applying the equivalence relation↔, we can partition the state space I into communicating classes.

Definition 3.5.3 (Communicating Class). The equivalence classes of the relation↔ are called communicating
classes.

Definition 3.5.4 (Closed and Absorbing Classes). A class (set of states) C of state space I is closed if for all
i ∈ C, the following is true.

i → j =⇒ j ∈ C.

We say that a state i ∈ I is an absorbing state if {i} is a closed class.

i ↛ j for all j ̸= i.

If i is an absorbing state, then once a Markov chain reaches state i, it will never leave. The state i is an absorbing
state because it absorbs the chain. Also, note the trivial case of the entire state space I being a closed class. This
is because i → j for all i, j ∈ I .

Definition 3.5.5 (Irreducibility). A Markov chain is irreducible if ther exists a unique closed class C, which is
the entire state space I .

Theorem 3.5.1. A Markov chain with state space I is irreducible if and only if

i ↔ j for all i, j ∈ I. (64)

Proof. (⇐= ) Assume i ↔ j for all i, j ∈ I . Let C be a closed class. We wish to prove that C = I . We will do
this by contradiction; assume C ̸= I . Then choose j ∈ I \ C. Pick any i ∈ C, we have i → j, so j ∈ C. This is a
contradiction, so C = I , making the Markov chain irreducible.

( =⇒ ) Assume the Markov chain is irreducible. We wish to show that i ↔ j for all i, j ∈ I . We will do
this by contradiction; assume i ↮ j for some i, j ∈ I . Then, i → j and j → i are false. This implies that i and j
are in different closed classes, which contradicts the Markov chain being irreducible. Therefore, i ↔ j for all
i, j ∈ I . This completes the proof.

Definition 3.5.6 (Recurrence). A state i ∈ I is recurrent if

Pi(X t = i for infinitely many t)= 1. (65)

A state i ∈ I is transient if
Pi(X t = i for infinitely many t)= 0. (66)

This leads us to the dichotomy theorem.

Theorem 3.5.2 (Dichotomy). All states are either recurrent or transient.

We will not prove this theoreom yet, we will first introduce some more definitions.
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Definition 3.5.7 (mth Return Time). Given a state space I , the mth return time of state i is defined as

R{i}
0 = 0 and R{i}

m = inf {t > R{i}
m−1 | X t = i}. (67)

Intuitively, the mth return time is the time it takes for the Markov chain to return to state i for the mth time.

Note that the "hit", t = 0, is not counted as a return time.

Theorem 3.5.3. For all m ≥ 0 and i ∈ I , conditioned on {R{i}
m <∞}, the random variable

G{i}
m+1 := R{i}

m+1 −R{i}
m

is independent of FR{i}
m
and has the same distribution as R{i}

1 under Pi .

This theorem is a consequence of the strong Markov property. Once a Markov chain returns to a state i, the
future "waiting time" until it returns is independent of what has happened before. Also, the distribution of the
waiting time is the same as the distribution of the first return time.

Proof. Given R{i}
m <∞, we use the strong Markov property.(

XR{i}
m +k

)
k≥0

is independent of FR{i}
m

.(
XR{i}

m +k

)
k≥0

∼Markov(δi,P).

The second line states that the process after R{i}
m is a Markov chain with the same transition matrix as the

original chain. Using the defintition, we can rewrite the m-th gap, G, as follows.

G{i}
m = R{i}

m+1 −R{i}
m = inf {t > R{i}

m | X t = i}−R{i}
m

= inf {t = R{i}
m +k | X t = i}−R{i}

m

= inf{k > 0 | XR{i}
m +k = i}

The last line is a restatement of the definition of the gap. This implies that G{i}
m is the first return time of the

process after R{i}
m to state i. This completes the proof.
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Definition 3.5.8 (Number of Returns).We define the total number of returns for a state i as Vi .

Vi =
∞∑

n=0
1{Xn=i}. (68)

Here, 1{Xn=i} is the indicator function

1{Xn=i} =
1 if Xn = i

0 if Xn ̸= i

Vi represents the number of times Xn = i in the entire lifetime of the Markov chain.

Using this definition, we can redefine recurrence and transience. For any i ∈ I , we have the following.

i is recurrent ⇐⇒ Pi(Vi =∞)= 1

i is transient ⇐⇒ Pi(Vi =∞)= 0

We can find the expectation of Vi using Fubini’s theorem.

E (Vi)=
∞∑

n=0
E
(
1{Xn=i}

)= ∞∑
n=0

Pi(Xn = i)=
∞∑

n=0
(Pn)ii.

We can apply Theorem 18 to find the following.

Pi(Vi > m)=Pi

(
G{i}

j <∞, j ∈ [0,m)
)
=

m−1∏
j=0

Pi(G{i}
j <∞)=Pi

(
R{i}

1 <∞
)m

.

Define the following.

ai =P
(
R{i} <∞

)
, i ∈ I. =⇒ Pi(Vi =∞)= lim

m→∞Pi(Vi > m)=
1 if ai = 1

0 if ai < 1

Moreover, we can calculate the expectation using ai .

Ei(Vi)=
∞∑

m=0
Pi(Vi > m)=

∞∑
m=0

am
i =

∞ if ai = 1
1

1−ai
if ai < 1

.

This leads us to the following result regarding recurrence and transience.

Theorem 3.5.4. For any i ∈ I , the following are equivalent.

Pi

(
R{i} <∞

)
= 1 ⇐⇒ Pi

(
Vi =∞) ⇐⇒ Ei(Vi)=∞,

Pi

(
R{i} =∞

)
< 1 ⇐⇒ Pi

(
Vi <∞) ⇐⇒ Ei(Vi)<∞.

Using these definitions, we can now prove Theorem 17.
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Proof. Let i ∈ I . If Pi(R{i} <∞)= 1, then i is recurrent. If Pi(R{i} <∞)< 1, then i is transient. This completes
the proof.

Recurrence and transience are class properties.

Theorem 3.5.5. For any communication class C, all states are recurrent or all states are transient.

Proof. Let C be a communication class. Take two states i, j ∈ C. It is enough to prove that if i is recurrent, then
so is j. By the previous theorems, with a state a ∈ I , we have the following.

a is recurrent ⇐⇒ Ea(Va =∞)=∞ ⇐⇒
∞∑

n=0
(Pn)aa =∞.

Since i ↔ j, there exists s, t,> 0 such that (Ps)i j > 0 and (P t) ji > 0. So, we obtain the following.

∞∑
n=0

(Pn) j j ≥
∞∑

n=0
(Pn+s+t) j j ≥

∞∑
n=0

(P t) ji(Pn)ii(Ps)i j = (P t) ji(Ps)i j

∞∑
n=0

(Pn)ii =∞.

This implies that j is recurrent. This completes the proof.

Theorem 3.5.6. Any recurrent communication class is closed.

Proof. Let C be a recurrent communication class and suppose for contradiction that C is not closed. Then
there exists states i ∈ C and j ∉ C such that Pi j > 0. Since i is recurrent, we have Pi(R{i} <∞)= 1.

However, once the chain moves from i to j, since j ∉ C and C is a communication class, there is no path back
from j to i (otherwise j would be in C). This means Pi(R{i} <∞)< 1, which contradicts the recurrence of i.
Therefore, C must be closed.

Theorem 3.5.7. Any irreducible Markov chain on a finite state space I is recurrent.

Proof. Suppose for contradiction that there exists a transient state i ∈ I . Since the state space is finite and the
chain is irreducible, we can partition the states into recurrent and transient states. Let R be the set of recurrent
states and T be the set of transient states, with i ∈ T .

From any transient state, the chain will eventually leave the set T and never return (by definition of transience).
Since I is finite, the chain must eventually reach and remain in the recurrent states R. But this contradicts
irreducibility: if the chain starts at a transient state and eventually gets trapped in R, then states in T cannot
communicate with states in R in both directions.

Therefore, there can be no transient states, and all states must be recurrent.

Theorem 3.5.8. Suppose P is irreducible and recurrent. Then, for any initial condition, the following holds.

P(R{i} <∞)= 1 for all i ∈ I. (69)

3.6 Invariant Distributions
Now, we will focus on the long-term behavior of irreducible and recurrent Markov chains.
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Definition 3.6.1 (Invariant Distribution). A probability distribution µ is called invariant or stationary for a
transition matrix P if

µP =µ (70)

Based on the above definition, two facts immediately follow.

1. By induction, we get that X0 ∼µ =⇒ X t ∼µ for all t ≥ 0.

2. µ is a left eigenvector of P with eigenvalue 1.

Theorem 3.6.1. Let P be a stochastic matrix on a finite state space I . Suppose that for some i ∈ I , (Pn)i j has a
limit as n →∞ for all j ∈ I . Let

µ j := lim
n→∞(Pn)i j. (71)

Then, µ= (
µ j

)
j∈I is an invariant distribution for P .

Proof. We first assure ourselves that µ is a probability distribution. Since I is finite, we can interchange limits
and summations over I . Thus, since Pn is a stochastic matrix, we have the following.

∑
j∈I
µ j =

∑
j∈I

lim
n→∞(Pn)i j = lim

n→∞
∑
j∈I

(Pn)i j = lim
n→∞1= 1.

Now, we prove that µ j is invariant. Observe the following.

(Pn+1)i j =
∑
k∈I

(Pn)ikPk j.

Taking the limit as n →∞, we have the following.

µ j = lim
n→∞(Pn+1)i j = lim

n→∞
∑
k∈I

(Pn)ikPk j =
∑
k∈I

lim
n→∞(Pn)ikPk j =

∑
k∈I

µkPk j = (µP) j.

This completes the proof.

Note that the above theorem assumes that the limit limn→∞(Pn)i j exists for all j ∈ I . This is not always the
case. However, if the limit does exist, then the invariant distribution is unique.

Example 3.6.1. Consider the following trivial Markov chain.

1 2

1

1

The transition matrix is

P =
(
0 1
1 0

)
The limit limn→∞(Pn)i j does not exist for all j ∈ I . This is because the powers of P oscillate between the



33

identity matrix and P . However, the invariant distribution is µ= (1/2,1/2).

Invariant Distributions using the First Return Time

Recall that the first return time of a Markov chain is defined as

R{i} := inf {n ≥ 1 | Xn = i}. (72)

For j ∈ I , define the following.

γ(i)
j := Ei

R{i}−1∑
n=0

1{Xn= j}.

γ(i)
j is the expected number of visits to state j until the first return to state i. With the strong Markov chain, we

can establish the following theorem.

Theorem 3.6.2. Let the Markov chain be irreducible and recurrent. Fix some state i ∈ I . Then, the following
hold.

(i) γ(i)
i = 1.

(ii) γ(i)
i =

(
γ(i)

k

)
k∈I

is an invariant distribution for P .

(iii) γ(i)
k ∈ (0,∞) for all k ∈ I .

(iv)
∑

k∈I γ
(i)
k = EiR{i}.

Proof. Fix i ∈ I . For ease of notation, let Ri = R{i} and γ j = γ(i)
j . We will prove each part of the theorem.

(i) By definition, we have that Xn ̸= i for n ∈ [0,Ri −1]. Thus, we get the following.

γi = Ei

Ri−1∑
n=0

1{Xn=i} = Ei1X0=i = 1.

(ii) We can rewrite the expectation as follows.

γk = Ei

Ri−1∑
n=0

1Xn=k = Ei

Ri∑
n=1

1Xn=k

= Ei

∞∑
n=1

∑
j∈I
1Xn−1= j,Xn=k,Ri>n−1

=
∞∑

n=1

∑
j∈I
Pi(Xn = k | Xn−1 = k,Ri > n−1)Pi(Xn−1 = j,Ri > n−1)

=
∞∑

n=1

∑
j∈I

P jkPi(Xn−1 = j,Ri > n−1)

= ∑
j∈I

P jkEi

∞∑
n=1

1Xn−1= j,Ri>n−1

= ∑
j∈I

P jkEi

Ri−1∑
n=0

1Xn= j =
∑
j∈I

P jkγ j.
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Since the above result is true for any k, we have γP = γ.

(iii) Let k ∈ I . Since the Markov chain is irreducible and recurrent, we have i ↔ k, meaning that (Pn)ik > 0
and (Pm)ki > 0 for some n,m ≥ 1. By (ii), we have that γ= γP = γP2 = . . . = γPN . Thus, we have the
following.

γk =
∑
j∈I
γ j(Pn) jk ≥ γi(Pn)ik > 0.

and

1= γi =
∑
j∈I
γ j(Pm) ji ≥ γk(Pm)ki =⇒ γk ≤ 1/(Pm)ki <∞.

Based on the above inequalities, we conclude that γk ∈ (0,∞).

(iv) By linearity, we have the following.

EiRi = Ei

Ri−1∑
n=0

1= E
Ri−1∑
n=0

1Xn∈I =
∑
k∈I

Ei

Ri−1∑
n=0

1Xn=k =
∑
k∈I

γk.

Next, we establish the minimality of γ(i).

Theorem 3.6.3. Let P be irreducible and let λ be an invariant measure for P with λi = 1. Then, λ≥ γ(i). If in
addition P is recurrent, then λ= γ(i).

Proof. For any j ∈ I , we have the following.

λ j =
∑

k1∈I
λk1 Pk1 j = Pi j +

∑
k1 ̸=i

λk1 Pk1 j

= Pi j +
∑

k1 ̸=i
Pik1 Pk1 j +

∑
k1,k2≤i

λk2 Pk2k1 Pk1 j

...

= Pi j +
∑

k1 ̸=i
Pik1 Pk1 j + . . .+ ∑

k1,...,kn−1 ̸=i
Pikn−1 · · ·Pk1 j

+ ∑
k1,...,kn ̸=i

λkn Pknkn−1 · · ·Pk1 j

=Pi(X1 = j,R{i}≥ 1)+Pi(X2 = j,R{i}≥ 2)

+ . . .+Pi(Xn = j,R{i}≥ n)+ ∑
k1,...,kn ̸=i

λkn Pknkn−1 · · ·Pk1 j
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We drop the nonnegative term and the limit as n →∞ to get the following.

λ j ≥
∞∑

n=1
Pi(Xn = j,R{i}≥ n)= γ j.

Now suppose P is recurrent. Then, γ is an invariant measure for P .

µ j :=λ j −γ(i)
j

Consider the above definition. By linearity, it is easy to see that µ is an invariant measure for P . Additionally,
we have that µi =λi −1= 0 and µ j ≥ 0 for all j ∈ I . Pick any j ̸= i. Since P is irreducible, we have (Pn)i j > 0
for some n ≥ 1. Thus, we have the following.

0=µi =
∑
j∈I
µ j(Pn)i j ≥µ j(Pn)i j =⇒ µ j = 0.

We conclude that µ= 0, so λ= γ(i).

Recall the following implications

i ∈ I is recurrent ⇐⇒ Pi(Xn = i infinitely often)= 1 ⇐⇒ Pi(R{i} <∞)= 1.

Definition 3.6.2 (Positive and Null Recurrence). A state i is positive recurrent if EiR{i} <∞. If i is recurrent
but not positive recurrent, then i is null recurrent.

Note that if i is positive recurrent, then Pi(R{i} <∞)= 1, and thus, must be recurrent.

Theorem 3.6.4. Let P be irreducible and recurrent. Suppose that i is a positive recurrent state.

µ j :=
γ(i)

j

EiR{i} , j ∈ I. (73)

The above is an invariant distribution for P .

Proof. By property (iv) of of Theorem 25, µ= (µ j) j∈I is a probability distribution. Thus, the result follows from
(iii).

Theorem 3.6.5. Let a transition matrix P be irreducible. Then the following are equivalent.
(i) Every state is positive recurrent.
(ii) Some state is positive recurrent.
(iii) P has an invariant distribution π.

Additionally, when (iii) holds,
EiR{i} = 1/πi for all i ∈ I. (74)

Example 3.6.2. Let there be a Markov chain on a state space I = {1,2,3,4}. The transition matrix is given as
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follows.

P =


0 1/2 0 1/2

1/2 0 1/2 0
0 1/2 0 1/2

1/2 0 1/2 0


Let µ be an invariant probability distribution.

µ1 = 1
2
µ2 + 1

2
µ4 µ2 = 1

2
µ1 + 1

2
µ3

µ3 = 1
2
µ2 + 1

2
µ4 µ4 = 1

2
µ1 + 1

2
µ3

This enforces the following probability distribution: µ= (1/4,1/4,1/4,1/4).

3.7 Aperiodicity & Convergence
Consider

P =
(
0 1
1 0

)

We have P2n = I and P2n+1 = P for all integer n ≥ 0. Clearly, p(n)
i j does not converge for all i, j. In this case,

the states are not aperiodic.

Definition 3.7.1 (Aperiodicity). A state i is aperiodic if p(n)
ii > 0 for all sufficiently large n.

Lemma 3.7.1. Suppose P is irreducible with an aperiodic state i. Then for all states j and k, we have that
p(n)

jk > 0 for all sufficiently large n. Consequently, all states are aperiodic

Proof. Let j,k ∈ I . Since P is irreducible, for some r, s ≥ 0, we have p(r)
ji > 0 and p(s)

ik > 0. Then,

p(r+n+s)
i j ≥ p(r)

ji p(n)
ii p(s)

ik > 0

for all sufficiently large n.

Recall that if P is irreducible and positive recurrent, then there exists a unique invariant distribution π= (πi)i∈I

given by

πi := 1
EiRi

, Ri = R{i} := inf {t ≥ 1 | X t = i}.

Theorem 3.7.1. Let (Xn)n≥0 ∼Markov(λ,P). Suppose P is irreducible and positive recurrent with a unique
invariant distribution π= (πi)i∈I . If P is aperiodic, then

P (Xn = j)→π j as n →∞ for all j

In particular, for any fixed i ∈ I , p(n)
i j →π j as n →∞.
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We write

Fn(i)= 1
n

n−1∑
t=0

1{X t=i}, i ∈ I

as the fraction of time the Markov chain stays at the state i in the time interval 0 to n−1. Then, we have

EFn(i)= 1
n

n−1∑
t=0

P (X t = i)→πi

as n →∞ if P is irreducible and aperiodic with invariant distribution π. Thus, in this case, the asymptotic
fraction of times the Markov chain spends at i is πi . We will prove Theorem 29 using the coupling technique.

Definition 3.7.2. Let Λ be an index set such as {0,1,2, . . .} or [0,∞). A coupling between two stochastic
processes (X i)i∈Λ and (Yi)i∈Λ is a joint distribution

((
X̂ i, Ŷi

))
i∈Λ such that

(
X̂ i

)
i∈Λ ∼ (X i)i∈Λ and

(
Ŷi

)
i∈Λ ∼ (Yi)i∈Λ .

The goal of such a coupling is to define the processes in the same space. There is no unique coupling.

Proof. Consider two independent discrete-time Markov chains

(Xn)n≥0 ∼Markov(λ,P), (Yn)n≥0 ∼Markov(π,P) .

Observe that for any n ≥ 0, the distribution of Yn is π, that is,

P (Yn = j)=π j, j ∈ I.

since π is an invariant distribution. Let

λ̃i j :=λiπ j, (i, j) ∈ I × I

and
p̃i j,kl := pik p jl , (i, j), (k, l) ∈ I × I.

Define a stochastic process W on I× I as Wn = (Xn,Yn). Since X and Y are independent, we obtain (Wn)n≥0 ∼
Markov(λ̃, P̃). We claim that W is irreducible, aperiodic, and positive recurrent. Since P is irreducible, for any
states (i, j), (k, l) ∈ I × I , there exist n1,n2 ≥ 0 such that p(n1)

ik > 0 and p(n2)
jl > 0. Taking n =max(n1,n2), we

have p̃(n)
i j,kl ≥ p(n)

ik p(n)
jl > 0, so W is irreducible. Since P is aperiodic, there exists N such that p(n)

ii > 0 for all

n ≥ N and all i ∈ I . Then p̃(n)
i j,i j = p(n)

ii p(n)
j j > 0 for all n ≥ N , so W is aperiodic. Since I is finite (or P is positive

recurrent), I × I is also finite, so W is positive recurrent. The invariant distribution of W is π̃i j =πiπ j . By the
convergence theorem for irreducible, aperiodic, positive recurrent chains:

P(Wn = (i, j))→πiπ j as n →∞.
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Now, observe that P(Xn = i,Yn = j)=P(Xn = i)P(Yn = j)=P(Xn = i)π j by independence. Therefore:

P(Xn = i)π j →πiπ j as n →∞.

Since π j > 0 for all j (by irreducibility and positive recurrence), we can divide by π j to get:

P(Xn = i)→πi as n →∞.

This completes the proof.

3.8 Time Reversal & Detailed Balance

Theorem 3.8.1. Let P be irreducible with an invariant distribution π, and let (Xn)n≥0 ∼Markov(π,P). Take
N ≥ 1 and set Yn = XN−n for n = 0,1, . . . , N . Then, we have

(Yn)N
n=0 ∼Markov

(
π, P̂

)
where p̂i j =π j pi j/πi for i, j ∈ I . Moreover, π is an invariant distribution for P̂ .

The chain (Yn)0≤n≤N is called the time-reversal of (Xn)0≤n≤N .

Proof. First, we check that P̂ is a transition matrix. We have p̂i j ≥ 0 for all i, j and

∑
j∈I

p̂i j = 1
πi

∑
j∈I
π j p ji = 1

πi
πi = 1.

since π is invariant for P . Next, we check that
∑

i∈I πi p̂i j =π j for all i. Indeed, we have that

∑
i∈I
πi p̂i j =

∑
i∈I
πi ·

π j p ji

πi
= ∑

i∈I
π j p ji =π j

∑
i∈I

p ji =π j.

Now we verify that (Yn)N
n=0 is indeed a Markov chain with transition matrix P̂ . For any 0 ≤ n ≤ N −1 and

states i0, i1, . . . , in, j ∈ I , we need to show:

P(Yn+1 = j |Y0 = i0,Y1 = i1, . . . ,Yn = in)= p̂in j.

Since Yk = XN−k , this is equivalent to:

P(XN−n−1 = j | XN = i0, XN−1 = i1, . . . , XN−n = in)= p̂in j.
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Using Bayes’ theorem and the Markov property of (Xn):

P(XN−n−1 = j | XN = i0, . . . , XN−n = in)

= P(XN−n−1 = j, XN−n = in, . . . , XN = i0)
P(XN−n = in, . . . , XN = i0)

= P(XN−n−1 = j)p j,in pin,in−1 · · · pi1,i0

P(XN−n = in)pin,in−1 · · · pi1,i0

= π j p j,in

πin

= p̂in j.

Finally, since (Xn) ∼ Markov(π,P), we have P(Y0 = i) = P(XN = i) = πi , so (Yn) starts with distribution π.

Definition 3.8.1. A Markov chain with transition matrix P and positive invariant distribution π is called
reversible if P̂ = P .

Definition 3.8.2. A distribution λ and a transition matrix P are said to be in detailed balance if

λi pi j =λ j p ji for all i, j ∈ I.

Theorem 3.8.2. Suppose that (λ,P) is in detailed balance. Then λ is an invariant distribution for P . Moreover,
if (Xn)n≥0 ∼Markov(λ,P), then (Xn)n≥0 is reversible.

Let us consider random walks on locally finite graphs. Let G = (V ,E) be an undirected connected graph. For
v ∈V , the degree of v is defined as

deg(v)= |{u ∈V : (u,v) ∈ E}| .

We say that G is locally finite if deg(v) <∞ for all v ∈ V . A locally finite graph G is finite if V is finite. Let us
assume that G is locally finite. For u,v ∈V , we write u ∼ v if (u,v) ∈ E, and u ≁ v if (u,v) ∉ E.

puv =
 1

deg(u) if u ∼ v

0 if u ≁ v

It is easy to see that P = (puv) is a stochastic matrix onV×V . Additionally, sinceG is connected, P is irreducible.
A Markov chain X on G corresponding to P is called a simple random walk on G. For finite G,

λu = deg(u)
2 |E| , u ∈V

Theorem 3.8.3. If G is finite, then any random walk on G is positive recurrent with the unique invariant
distribution λ.

It suffices to show that (λ,P) is in detailed balance.

Proof. We wish to show that λu puv =λv pvu for all u,v. If (u,v) ∉ E, then both are 0. If (u,v) ∈ E, then

λu puv = deg(u)
2 |E| · 1

deg(u)
= 1

2 |E| =λv pvu
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If G is infinite, then any random walk on G is either null recurrent or transient. Let us consider a random walk
on the integer lattice Zd . If d ≤ 2, then the walk is null recurrent. If d ≥ 3, then it is transient.

3.9 Ergodic Theory & Sampling Algorithms
Ergodic theorems concern the limiting behavior of averages over time. The following theorem is vital in this
context.

Theorem 3.9.1 (The Strong Law of Large Numbers). Let Y0,Y1,Y2, . . . be a sequence of i.i.d non-negative
random variables with mean EY1 =µ ∈ [0,∞). Then

1
n

n−1∑
k=0

Yk →µ as n →∞ almost surely.

That is,

P

(
lim

n→∞
1
n

n−1∑
k=0

Yk =µ
)
= 1.

For any state i ∈ I and n ≥ 1, we define

Vi(n)=
n−1∑
k=0

1{Xk=i}.

Then Vi(n)/n is the proportion of times before n spent in state i.

Theorem 3.9.2 (The Ergodic Theorem). Assume that P is irreducible. Then

Vi(n)
n

→ 1
Ei Ri

as n →∞ almost surely.

Moreover, if P is positive recurrent, then for any bounded function f : I →R, we have

1
n

n−1∑
t=0

f (X t)→
∑
x∈I

f (x)πx as n →∞ almost surely.

where π is the invariant distribution.

Suppose that I is finite and π exists on I . We want to generate a sample from π and, for a given function f ,
approximate

π f := ∑
x∈I

πx f (x)

Suppose we know a transition matrix P on I × I , which is easy to sample from. Moreover, suppose P is
irreducible, aperiodic, and positive recurrent. Under P , the chain moves x → y with probability pxy. We now
describe the Metropolis-Hastings algorithm to sample from π.
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Algorithm 1Metropolis-Hastings Algorithm
Require: Target distribution π, proposal matrix P , number of steps N
Ensure: Sample sequence (X0, X1, . . . , XN )
1: Initialize X0 ∈ I arbitrarily
2: for t = 0,1, . . . , N −1 do
3: Propose Y ∼ P(X t, ·) ▷ i.e., P(Y = y)= pX t,y

4: Compute acceptance probability:
5: α(X t,Y )←min

{
1, πY pY ,Xt

πXt pXt ,Y

}
6: Generate U ∼Uniform(0,1)
7: if U ≤α(X t,Y ) then
8: X t+1 ←Y ▷ accept the proposal
9: else
10: X t+1 ← X t ▷ reject the proposal
11: end if
12: end for
13: return (X0, X1, . . . , XN )

The key insight is that this algorithm constructs a Markov chain with transition probabilities:

p̃xy =
pxyα(x, y) if x ̸= y

pxx +∑
z ̸=x pxz(1−α(x, z)) if x = y

where the acceptance probability α(x, y) ensures that the detailed balance condition πx p̃xy =πy p̃yx is satisfied,
making π the invariant distribution of the constructed chain.

Example 3.9.1 (Uniform Sampling on Graphs). Let G = (V ,E) be a connected finite graph with large |V |.
Our goal is to generate a sample uniformly at random from V , i.e., πx = 1/|V | for all x ∈V . We can use simple
random walk as our proposal distribution with transition matrix P given by pxy = 1/dx for x ∼ y (where dx is
the degree of vertex x), and pxy = 0 otherwise.

For adjacent vertices x ̸= y (i.e., x ∼ y), the acceptance probability becomes:

α(x, y)=min
{

1,
πy py,x

πx px,y

}
=min

{
1,

(1/|V |) · (1/dy)
(1/|V |) · (1/dx)

}
=min

{
1,

dx

dy

}

This gives us the Metropolis-Hastings transition probabilities:

p̃xy =


1
dx

min
{
1, dx

dy

}
= 1

max{dx,dy} if x ∼ y

0 if x ̸∼ y, x ̸= y

1−∑
z∼x p̃xz if x = y
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This chain has uniform distribution π as its invariant distribution and tends to be more efficient than simple
random walk on graphs with varying vertex degrees, as it reduces the tendency to get trapped at high-degree
vertices.
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4 Continuous-Time Markov Chains

4.1 Equivalent Definitions
Let I be a countable set. A continuous-time Markov chain (CTMC) on the state space I is a right-continuous
stochastic process (X t)t≥0 taking values in I , indexed by continuous time [0,∞) and defined using

(i) an initial probability distribution λ on I

(ii) a rate matrix Q = (qi j)i, j∈I such that

(a) qi j ≥ 0 for all i ̸= j and

(b) Q1= 0. That is, qii =−∑
j ̸=i qi j for all i ∈ I .

The right-continuity is needed to ensure that that finite-dimensional distributions characterize the joint distri-
bution of the whole process.

P
(
X t1 = x1, X t2 = x2, . . . , X tn = xn

)=P(
Yt1 = x1,Yt2 = x2, . . . ,Ytn = xn

)
for all n ≥ 1 and 0≤ t1 < t2 < ·· · < tn implies that (X t)t≥0

d= (Yt)t≥0. There are three equivalent ways of defining
a CTMC (X t)t≥0 ∼Markov(λ,Q).

For given positive functions f , g, the notation f (h)= o(g(h)) means that limh→0 f (h)/g(h)= 0.

Definition 4.1.1 (The Infinitesimal Generator).We say that, a right-continuous stochastic process (X t)t≥0

taking values in I is a CTMC with initial distribution λ and rate matrix Q if
(i) P(X0 = x)=λx for all x ∈ I ,
(ii) X t jumps from state i to j with rate qi j ≥ 0, i.e.

P (X t+h = j | X t = i)=
hqi j + o(h) if i ̸= j

1+hqii + o(h) if i = j

as h → 0 for all t ≥ 0.

If we write the transition matrix as

P(t)= (P(X t = j | X0 = i))i, j∈I ,

then the above definition says that

P(h)= I +hQ+ o(h) as h → 0.

Note that, this shows that we definitely need Q1= 0 since P(h)1= 1 for all h ≥ 0.

In the discrete example, the transition matrix at time n, given the state at 0, is given by Pn. For continuous
time, we want to define P t for real t ≥ 0. Note that, for a positive real number p > 0, we can define pt with
et log p . Here, Q is analogous to log p. First, let us define some linear algebra machinery.
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Definition 4.1.2 (Spectral Norm). The spectral norm of a matrix A is defined as

||A|| := sup
||v||=1

||Av||, where ||v|| =
(∑

i∈I
v2

i

)1/2

.

Definition 4.1.3 (The Matrix Exponential). For a matrix A with ||A|| ≤∞, the exponential of A is defined as

eA := I + A+ 1
2!

A2 + 1
3!

A3 +·· · =
∞∑

n=0

1
n!

An.

Note that for commuting matrices A,B, we have eA+B = eA eB. This holds with the polynomial expansion of
the exponential function. Additionally,

(
eA)−1 = e−A .

Theorem 4.1.1. Let I be a countable set. An I× I matrix Q with ||Q|| <∞ is a rate matrix if and only if etQ is a
stochastic matrix for all t ≥ 0.

Proof. (=⇒ ) All entries in etQ are non-negative. Further, using Q1= 0, we have

etQ1=
∞∑

k=0

tk

k!
Qk1=Q01= 1

Hence, etQ is a stochastic matrix for all t ≥ 0.
(⇐= ) Suppose that etQ is a stochastic matrix for all t ≥ 0. Since Q = limt→0

etQ−I
t , we have qi j ≥ 0 for all i ̸= j.

Further, since etQ1= 1 for all t ≥ 0, we have

Q1= lim
t→0

etQ − I
t

1= lim
t→0

etQ1−1
t

= lim
t→0

1−1
t

= 0 so, etQ is stochastic.

Theorem 4.1.2. Let Q be a rate matrix on I with ||Q|| <∞. We define P(t) := etQ . Then, (P(t))t≥0 satisfies the
following properties:

(i) P(t+ s)= P(t)P(s) for all t, s ≥ 0. This is the semi-group property.
(ii) (P(t))t≥0 is the unique solution to the forward equation

d
dt

P(t)= P(t)Q for t > 0, P(0)= I. the forward equation.

(iii) (P(t))t≥0 is the unique solution to the backward equation

d
dt

P(t)=QP(t) for t > 0, P(0)= I. the backward equation.
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Let us consider the Poisson process. Let I = {0,1, . . .} and λ> 0 be constant. Consider the rate matrix

Q =


−λ λ 0 0 · · ·
0 −λ λ 0 · · ·
0 0 −λ λ · · ·
...

...
...

...
. . .


Observe that ||Q|| ≤ 2λ<∞. Indeed, for any v= (vi)i∈I with ||v|| = 1, we have

||Qv||2 = ∑
i≥0

(−λvi +λvi+1)2 = 2λ2 ∑
i≥0

(
v2

i +v2
i+1

)≤ 4λ2 ∑
i≥0

v2
i = 4λ2.

So, P(t) := etQ is well-defined for all t ≥ 0. By the forward equation, we have P ′(t)= P(t)Q. It follows that for
all i, j ∈ I ,

P ′
i, j(t)=

∑
k∈I

Pi,k(t)Qk, j =−λPi, j(t)+λPi, j−1(t), Pi, j(0)=
1 if i = j

0 if i ̸= j

With induction, one can show that

Pi j(t)= e−λt (λt) j−i

( j− i)!
· 1i≤ j =P (Poisson(λt)= j− i)

Definition 4.1.4 (The Transition Matirx).We say that a right-continuous stochastic process (X t)t≥0 taking
values in I is a CTMC with initial distribution λ and rate matrix Q if

P
(
X t0 = x0, X t1 = x1, . . . , X tn = xn

)=λx0

n∏
i=0

Pxi xi+1 (ti+1 − ti)

4.2 Explosion Times & Minimal Chains
Let (X t)t≥0 be a CTMC taking values in I . The following three properties hold.

(i) t 7→ X t(ω) is right-continuous in [0,∞) almost surely.

(ii) Conditional on {X t = i}, (Xs)s≥t is independent of X (r)r≥t. This is theMarkov property.

(iii) P (X t+h = j | X t = i)= δi j + qi jh+ o(h) as h → 0.

Definition 4.2.1 (Explosion Time). Let X = (X t)t≥0 be a CTMC constructed from its jump chain and holding
times. The explosion time ζ is defined as

ζ= lim
n→∞ Jn

where Jn is the time of the n-th jump.

Theorem 4.2.1. If any of the following hold, we have P (ζ=∞)= 1.
(i) supi∈I qi <∞.
(ii) I is finite.
(iii) X0 = i and i is recurrent for the jump chain.
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Proof. Let M := supi∈I qi <∞. We have T1,T2, · · · iid∼ Exp(1). By a previously proven theorem,
∑∞

k=1 Tk =∞
almost surely, and thus

ζ= lim
n→∞ Jn =

∞∑
k=1

Tk/qYk−1 ≥
∞∑

k=1
Tk/M =∞ almost surely.

If I is finite, then supi∈I qi <∞ trivially. We know that (Yn)n≥0 visits i infinitely often, at times R i
1,R i

2, . . ., say.
If qi = 0, then ζ≥ J1 =∞. If qi > 0, then ζ≥ q−1

i
∑∞

k=1 TR i
k
=∞.

Let us fix a parameter θ > 0 and define zi = Ei e−θζ for i ∈ I . Then, z= (zi)i∈I satisfies

(i) |zi| ≤ 1 and

(ii) Qz= θz.

Moreover, if ẑ satisfies both of these, then |ẑi| ≤ zi for all i.

Proof. Since θ > 0, it holds that |zi| ≤ 1. Recall that Sn = Tn/qYn−1 with Tn
iid∼ Exp(1). We have for all i,

zi = Ei

(
e−θ

∑∞
n=1 Sn

)
= ∑

k ̸=i
Ei

(
e−θS11Y1=k ·Ek

(
e−θζ

))
= ∑

k ̸=i
Ei

(
e−θT1/qi

)
·Πikzk.

Since E
(
e−cT)= ∫ ∞

0 e−cxe−x dx = (1+ c)−1 for all c ≥ 0, it follows that

zi = qi

θ+ qi

∑
k ̸=i

qik

qi
zk =

1
θ+ qi

∑
k ̸=i

qikzk =
1

θ+ qi
((Qz)i − qii zi)= 1

θ+ qi
((Qz)i + qi zi) .

This proves Qz= θz. For the second assertion, it is enough to show that for all n ≥ 0,

|ẑi| ≤ Ei e−θJn for all i ∈ I.

If the above equation holds, then by taking the limit as n →∞, since limn→∞Ei e−θJn = zi by the monotone
convergence theorem, we are done. The above equation clearly holds if n = 0. We induct on n and obtain:

|ẑi| = 1
θ+ qi

(|(Qẑ)i|+ qi|ẑi|)≤ 1
θ+ qi

∑
k ̸=i

qik|ẑk| ≤
1

θ+ qi

∑
k ̸=i

qikEk e−θJN

= qi

θ+ qi

∑
k ̸=i

ΠikEk e−θJN = ∑
k ̸=i

Ei

(
e−θS11Y1=k ·Ek

(
e−θJN

))
= Ei e−θJN+1 .

The proof is complete by induction.

Theorem 4.2.2. The following statements are equivalent.
(a) P (ζ=∞)= 1 for all i ∈ I .
(b) If Qz= z and supi∈I |zi| ≤ 1, then z= 0.
(c) If Qz= θz for some θ > 0, and supi∈I |zi| < 1, then z= 0.
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We say a rate matrix Q is non-explosive if Qz= θz for some θ > 0 and supi∈I |zi| ≤ 1 imply z= 0. Otherwise, Q
is explosive. A CTMC X is non-explosive or conservative if

Pi (ζ=∞)= 1 for all i ∈ I.

Note that for a CTMC X with rate matrix Q, X is explosive if and only if Q is. A process X is a minimal chain if
it is either non-explosive or satisfies

X t = ∂ for all t ≥ ζ

where ∂ is an added state called the cemetery state.

notes on jump chains, stopping times, and birth (poisson) processes are missing, will fill in soon.

4.3 Class Structure, Recurrence, and Transience
Consider a CTMC (X t)t≥0 ∼Markov(λ,Q) on I . Let P(t)= (

pi j(t)
)

i, j∈I be the transition matrix of X .

pi j(t) :=P (X (t)= j | X (0)= i) .

Definition 4.3.1.We say that i leads to j, i → j if

Pi (X t = j for some t ≥ 0)> 0.

We say that i communicates with j, i ↔ j if both i → j and j → i.

Communication is an equivalence relation and I can be decomposed into disjoint communicating classes. The
notions of closed classes, absorbing states, and irreducibility are all inherited from the jump chains.

Theorem 4.3.1. For distinct i, j ∈ I , the following are equivalent.
(i) i → j.
(ii) i → j for the jump chain.
(iii) qik1 qik1,k2 · · ·qkn j > 0 for some states k1, . . . ,kn ∈ I .
(iv) pi j(t)> 0 for some t ≥ 0.
(v) pi j(t)> 0 for all t ≥ 0.

The CTMC X (t)t≥0 is irreducible if and only if pi j(t)> 0 for all i, j ∈ I and t ≥ 0. We now discuss hitting times
and return times for a minimal Markov chain X with rate matrix Q.

Definition 4.3.2 (Hitting Time). For a subset A ⊆ I , the hitting time of A is defined as

DA := inf {t ≥ 0 | X t ∈ A} .

We will use HA to denote the hitting time for the jump chain (Yn)n≥0.

Definition 4.3.3 (Return Time). For a subset A ⊆ I , the return time of A is defined as

RA := inf {t ≥ J1 | X t ∈ A} .
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Note that

DA =
JHA if HA <∞
∞ otherwise

Proof. We use the fact that X t =Yn if Jn ≤ t ≤ Jn+1. If HA is the hitting time of A for the jump chain, then
{HA <∞}= {DA <∞} and, on this set, we have DA = JHA .

Let us define the hitting probabilities and the expected hitting time, respectively, as

hA
i =Pi

(
DA <∞

)
=Pi

(
HA <∞

)
, kA

i = Ei DA.

We write hA := (
hA

i
)

i∈I and kA := (
kA

i
)

i∈I . Note that hA is a vector of probabilities and kA is a vector of
expected hitting times.

Theorem 4.3.2. The following are true.
(i) hA is the minimal non-negative solution to the following equationhA

i = 1 if i ∈ A∑
j∈I qi jhA

j = 0 if i ∉ A

(ii) Assume qi > 0 and kA
i <∞ for all i ∉ A. Then kA is minimal non-negative solutions to the following

equation. kA
i = 0 if i ∈ A

−∑
j∈I qi jkA

j = 1 if i ∉ A

Definition 4.3.4 (Recurrence & Transience).We stay that a state is recurrent if

Pi ({t ≥ 0 | X t = i} is unbounded)= 1.

We say that a state is transient if

Pi ({t ≥ 0 | X t = i} is unbounded)= 0.

Dichotomy is defined as the following holding.

(a) If qi = 0 or i is recurrent for the jump chain, then i is recurrent for the CTMC and∫ ∞

0
pii(t)dt =∞.

(b) If qi > 0 and i is transient for the jump chain, then i is transient for the CTMC and∫ ∞

0
pii(t)dt <∞.
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Consequently, i is recurrent for the CTMC if and only if
∫ ∞

0 pii(t)dt =∞.

4.4 Invariant Measures
Let (X t)t≥0 ∼Markov(λ,Q) be an irreducible minimal CTMC on I . Let Π= (πi j) be the transition matrix of
its jump chain.

Definition 4.4.1.We say λ is invariant for X if λQ = 0.

Theorem 4.4.1. A measure λ is invariant if and only if (λi qi)i∈I is invariant for Π.

This connection with invariant measures for the jumpmatrix allows us to apply existence and uniqueness results
for discrete-time Markov chains to establish the following result.

Theorem 4.4.2. Suppose that Q is irreducible and recurrent. Then, Q has an invariant measure λ which is
unique up to a multiplicative constant.

Let us introduce some notation. The first return time to state i for the corresponding jump chain (Yn)n≥0 is
defined as

Ni := inf{n ≥ 1 |Yn = i}.

An invariant measure for Π normalized so that γi
i = 1

γi
j = Ei

[
Ni−1∑
n=0

1{Yn= j}

]
, j ∈ I.

The first return time to state i for the CTMC (X t)t≥0 is defined as

Ri := inf{t ≥ J1 | X t = i}.

An invariant measure for Q normalized that so that µi
i = Ei[J1]= 1/qi is given by

µi
j = Ei

[∫ Ri

0
1{X t= j} dt

]
, j ∈ I.

wip. still missing some theorems on time reversal, convergence, and branching processes.
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