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Abstract
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1 Introduction

These are a collection of notes from the Spring 2025 offering of MATH 447, Real Vari-
ables, as taught by Lee Deville at the University of Illinois Urbana-Champaign. This
a rigorous undergraduate introduction to real analysis, with a focus on the theory of
differentiation and integration of functions of one real variable.

The course is based on Elementary Analysis: The Theory of Calculus by Ross.

1.1 On N

We begin with a discussion of the natural numbers, N. Intuitively, these have a clear
defintion.

Definition 1 (N). The natural numbers are the set of all positive integers.

N = {1,2,3, . . .}. (1.1)

The set of axioms that define the natural numbers are known as the Peano axioms.

Theorem 1 (The Peano Axioms of N.). The natural numbers are defined by the fol-
lowing axioms:

1. 1 ∈ N.

2. For every n ∈ N, n , 1, there exists a unique m ∈ N such that n = m + 1, called
the successor of m.

3. 1 is not the successor of any element of N.

4. If m,n ∈ N have the same successor, then m = n.

5. If X ⊆ N such that 1 ∈ X and for any n ∈ X, n + 1 ∈ X, then X = N.

These axioms are minimal. Removing any one of them allows for a description of
multiple sets and removes the uniqueness of the natural numbers. We now expand on
the fifth axiom, known as the principle of induction.

5



6 CHAPTER 1. INTRODUCTION

Definition 2 (Induction). Given an argument that depends on a natural number n,
P(n), we can establish that P(n) is true for all n ∈ N by proving the following:

1. P(1) is true.

2. P(k) =⇒ P(k + 1) for all k ∈ N.

Then, ∀ n ∈ N, P(n) is true.

Example 1. The triangle number formula, stated below, can be proven using induction.

n

∑
i=1

i =
n(n + 1)

2
. (1.2)

Proof. We first show that the formula holds for n = 1:

1

∑
i=1

i = 1 =
1(1 + 1)

2
.

Now, assume that the formula holds for n = k. Then,

k

∑
i=1

i =
k(k + 1)

2
.

We now show that the formula holds for n = k + 1:

k+1

∑
i=1

i =
k

∑
i=1

i + (k + 1)

=
k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2
.

Thus, by induction, the formula holds for all n ∈ N.

Example 2. We now use induction to prove the following, slightly unintuitive, state-
ment.

n

∑
i=1

i3 =

(
n

∑
i=1

i

)2

. (1.3)

Proof. We first show that the formula holds for n = 1:

P(1) =⇒ 13 = 1 = (1)2.
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Now, assume that the formula holds for n = k. Then induct on n = k + 1:

k+1

∑
i=1

i3 =
k

∑
i=1

i3 + (k + 1)3

=

(
k

∑
i=1

i

)2

+ (k + 1)3

=

(
k(k + 1)

2

)2

+ (k + 1)3

=
k2(k + 1)2

4
+ (k + 1)3

=
k2(k + 1)2 + 4(k + 1)3

4

=
(k + 1)2(k2 + 4(k + 1))

4

=
(k + 1)2(k2 + 4k + 4)

4

=
(k + 1)2(k + 2)2

4
=

(
k+1

∑
i=1

i

)2

.

1.2 On Z and Q.

We now define the integers, Z.

Definition 3 (Z). The integers are the set of all positive and negative whole numbers.

Z = {. . . ,−3,−2,−1,0,1,2,3, . . .}. (1.4)

Note that both the naturals and integers are ordered.

Definition 4 (Ordering). For any n,m ∈ N, one of the following is true:

1. n = m.

2. n < m.

3. n > m.

The same is true for Z.

The proof of this can be deduced using the Peano axioms, but it will be omitted for
brevity (it is quite tedious).

The Algebra of Z.

We now define the operations of addition and multiplication on Z.
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Definition 5 (Addition and Multiplication on Z.). These are posulates related to the
operations of addition and multiplication on Z.

(A1) For all x,y,z ∈ Z, (x + y) + z = x + (y + z).

(A2) For all x,y ∈ Z, x + y = y + x.

(A3) There exists an element 0 ∈ Z such that x + 0 = x for all x ∈ Z.

(A4) For all x ∈ Z, there exists an element −x ∈ Z such that x + (−x) = 0.

Note that this implies that Z is an abelian group under addition.

(M1) For all x,y,z ∈ Z, (x · y) · z = x · (y · z).

(M2) For all x,y ∈ Z, x · y = y · x.

(M3) There exists an element 1 ∈ Z such that x · 1 = x for all x ∈ Z.

(D) For all x,y,z ∈ Z, x · (y + z) = x · y + x · z.

Note that this implies that Z is a commutative ring under addition and multiplication.

The fundamental issue with the integers is that we cannot define multiplicative in-
verses. This leads us a construction of the rational numbers, Q.

Define a set S such that

S = {(x,y) | x,y,∈ Z and y , 0}. (1.5)

Now define an equivalence relation in S.

(a,b) ∼ (c,d) ⇐⇒ ad = bc. (1.6)

Equivalence. To prove that ∼ is an equivalence relation, we must show that it is
reflexive, symmetric, and transitive.

1. Reflexivity: (a,b) ∼ (a,b) since ab = ba.

2. Symmetry: If (a,b) ∼ (c,d), then ad = bc. This implies that cb = da, so (c,d) ∼
(a,b).

3. Transitivity: If (a,b) ∼ (c,d) and (c,d) ∼ (e, f ), then ad = bc and c f = de. This
implies that ad f = bc f = bde, so (a,b) ∼ (e, f ).

We give this set a name, Q.

Definition 6 (Q). The rational numbers are the set of all numbers that can be expressed
as a ratio of two integers.

Q =
{ a

b
| a,b ∈ Z and b , 0

}
. (1.7)
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All the properties of Z hold for Q, with the exception of the existence of multiplicative
inverses. This is because Q is a field, which is a commutative ring with multiplicative
inverses.

Proposition 1. Multiplicative inverses exist in Q.

Proof. Let x = (p,q) ∈ Q. Then, x−1 = (q, p).

(p,q) · (q, p) = (pq, pq) ∼ (1,1). (1.8)

The equivalence relation is true because pq = pq. Thus, x−1 = (q, p).
Note that we know p , 0 because multiplicative inverses are only defined for x ∈ Q,

x , 0.

Theorem 2. Q is a field.

We encounter a new problem after constructing Q. There are numbers that cannot be
expressed as a ratio of two integers. These are the irrational numbers.

Q Has Holes.

We begin with some geometric motivation. We draw a right triangle with legs of
length 1 and hypotenuse c. By the Pythagorean theorem, we have c2 = 2.

Theorem 3. There is no rational number c such that c2 = 2.

Proof. We prove this by contradiction. Assume c = a
b , where a,b ∈ Z and b , 0. Then,

c2 = 2 implies that a2

b2 = 2. This implies that a2 = 2b2. Since a2 is even, a is even.
Let a = 2k for some k ∈ Z. Then, 4k2 = 2b2, so b2 = 2k2. This implies that b is even.
However, this contradicts the fact that a and b are coprime. Thus, there is no rational
number c such that c2 = 2.

Theorem 4. Let x,y ∈ Q such that x < y. Then there are infinitely many irrational
numbers between x and y.

So, we have discovered an infinite amount of holes. In fact, this infinity is larger than
the infinity of the natural numbers.

Lemma 1. Let x,y ∈ Q such that x < y. Then,

x <
x + y

2
< y. (1.9)

Note that this implies that there are infinitely many rational numbers between x and y.

Lemma 2. Given x,y ∈ Q and x < y. Then

x +
x2 − x1√

2
<Q. (1.10)
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1.3 On Q and towards R.

Theorem 5 (Fraction Inequalities). We say for some p,q,r, s ∈ Z and q, s , 0 that

p
q
≤ r

s
(1.11)

if and only if ps ≤ rq.

Notice that this definition implies a relationship between the ordering of Q and Z.

Theorem 6 (Ordering of Q). The following are ordering properties of Q. For all x,y,z ∈
Q:

1. x ≤ y or y ≤ x.

2. If x ≤ y and y ≤ x, then x = y.

3. If x ≤ y and y ≤ z, then x ≤ z.

4. If x ≤ y, then x + z ≤ y + z.

5. If x ≤ y and 0 ≤ z, then xz ≤ yz.

Q is an ordered field.

Proposition 2. For all a ∈ Q, a · 0 = 0.

Proof. We rewrite 0 as 0 + 0.

a · 0 = a · (0 + 0) = a · 0 + a · 0

Use the property stating that for all a,b, c ∈ Q with c ≥ 0 and a ≤ b, ac ≤ bc. Then,
a · 0 ≤ a · 0 + a · 0. Thus, a · 0 = 0.

Definition 7 (Absolute Value on Q). The absolute value of a number x ∈ Q is defined
as

|x| =
{

x if x ≥ 0,
−x if x < 0.

(1.12)

This will help us prove the following theorem.

Theorem 7. Given a,b ∈ Q.

1. |a| ≥ 0 and |a| = 0 if and only if a = 0.

2. |ab| = |a| · |b|.

3. |a + b| ≤ |a|+ |b| (Triangle Inequality).
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Proof. We will prove the triangle inequality. Consider the following trivial statements.

−|a| ≤ a ≤ |a|,
−|b| ≤ b ≤ |b|.

(1.13)

Now, we add these inequalities.

−|a| − |b| ≤ a + b ≤ |a|+ |b|. (1.14)

Now, look at the following lemma, which is a restatement of the absolute value defi-
nition.

Lemma 3. If M > 0 and −M ≤ x ≤ M, then |x| ≤ M.

We apply this lemma to the inequality above.

|a + b| ≤ |a|+ |b|. (1.15)

which is the triangle inequality.

Theorem 8 (The Triangle Equality for n Numbers). Given a1, a2, . . . , an ∈ Q, we have∣∣∣∣∣ n

∑
i=1

ai

∣∣∣∣∣ ≤ n

∑
i=1

|ai|. (1.16)

Proof. We prove this by induction. The base case is trivial. Assume that the inequality
holds for n = k. Then, ∣∣∣∣∣ k

∑
i=1

ai + ak+1

∣∣∣∣∣ ≤ k

∑
i=1

|ai|+ |ak+1|. (1.17)

This implies that ∣∣∣∣∣k+1

∑
i=1

ai

∣∣∣∣∣ ≤ k+1

∑
i=1

|ai|. (1.18)

Thus, by induction, the inequality holds for all n ∈ N.

1.4 Bounds of R.

Let S be a non-empty set of numbers (R or Q). If there exists M ∈ S such that for any
x ∈ S, x ≤ M, then M is the maximum of S. The minimum is defined similarly.

Definition 8 (Maxes and Mins). We define the maximum and minimum of a set S as
follows:

max(S) = M ⇐⇒ ∀x ∈ S, x ≤ M min(S) = m ⇐⇒ ∀x ∈ S, x ≥ m. (1.19)

However, consider the open interval S = (a,b) = {x ∈ Q | a < x < b}. This set has no
maximum or minimum.
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Proposition 3. There is no maximum or minimum of the set S = (a,b).

Proof. We prove this by contradiction. Assume y = maxS. Then, y < b. Let z = y+b
2 .

Then, y < z < b. This implies that z ∈ S, which contradicts the assumption that y =
maxS. Thus, there is no maximum of S.

Definition 9 (Upper and Lower Bounds). Let S be a non-empty set of numbers. If
there exists M ∈ R such that for any x ∈ S, x ≤ M, then M is an upper bound of S. The
lower bound is defined similarly.

If a set S has an upper bound (there are sets that do not), we say S is bounded above. If
S has a lower bound, we say S is bounded below. If S is bounded above and below, we
say S is bounded.

Proposition 4. For a set S = (a,b), b is the minimum of the set of upper bounds of S.

This gives us a way to define the least upper bound and greatest lower bound of a set.

Definition 10 (Supremum). . Let S = (a,b) be a set that is bounded above. If there is a
least upper bound, then this is called the supremum of S.

supS = min{M ∈ R | ∀x ∈ S, x ≤ M}. (1.20)

Definition 11 (Infimum). . Let S = (a,b) be a set that is bounded below. If there is a
greatest lower bound, then this is called the infimum of S.

infS = max{m ∈ R | ∀x ∈ S, x ≥ m}. (1.21)

This leads to the axiom that allows us to define the real numbers.

Theorem 9 (The Completeness Axiom for R). Given a set in R that is bounded above,
there exists a least upper bound. Given a set in R that is bounded below, there exists a
greatest lower bound.

Intuitively, this axiom states that R has no holes. This is the defining property of the
real numbers. No matter what set we take, there is always a number that is the least
upper bound or greatest lower bound. This is what separates R from Q.

Example 3. Let S ⊂ R be defined as follows.

S =
{

x ∈ R : x2 < 2
}

(1.22)

Then, the least upper bound of S is
√

2. Note that in Q, there is no such number.

Let us say we have a set S ⊂ R and S is not bounded above. Then,

∄ supS ∈ R.

We say that the supremum of S is ∞. This means there is no upper bound. Similarly,
if S is not bounded below, then

∄ infS ∈ R.
We say that the infimum of S is −∞. This means there is no lower bound.



2 Sequences

2.1 Sequences and Countability.

We define an important object in analysis, the sequence.

Definition 12 (Sequences). A sequence is a function f : N → R. We denote the se-
quence as {an}∞

n=1, where an = f (n).

Note that we do not need to start at n = 1, n = 0 is a very common starting point. We
can also start at any n ∈ N.

Example 4. The sequence {an}∞
n=0 defined as an = 1

n+1 is the harmonic sequence.

an =

{
1,

1
2

,
1
3

, . . .
}

. (2.1)

Example 5. The sequence {an}∞
n=1 defined as an = (−1)n is an alternating sequence

an = {−1,1,−1,1, . . .} . (2.2)

Definition 13 (Limits of Sequences). Let {an}∞
n=1 be a sequence. We say that L ∈ R is

the limit of the sequence if for all ϵ > 0, there exists N ∈ N such that for all n ≥ N,
|an − L| < ϵ. We denote this as

lim
n→∞

an = L. (2.3)

Here, ϵ is the "error" in the limit. We can approach L as close as needed by going far
enough in the sequence.

Proposition 5. Given the sequence {xn}∞
n=1 with each xn = 1

n2 ,

lim
n→∞

xn = 0.

Proof. We need to show for all ϵ > 0, that∣∣∣∣ 1
n2 − 0

∣∣∣∣ < ϵ.

for sufficiently large n. This implies that

1
n2 < ϵ =⇒ n >

1√
ϵ

.

Therefore, choose N > 1√
ϵ

(like N = ⌈ 1√
ϵ
⌉). Then, for all n ≥ N, |xn − 0| < ϵ.

13
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Theorem 10. Limits of sequences are unique.

Proof. Assume that limn→∞ an = L and limn→∞ an = M. Then, for all ϵ > 0, there exists
N1, N2 ∈ N such that for all n ≥ N1, |an − L| < ϵ and for all n ≥ N2, |an − M| < ϵ.
Choose N = max(N1, N2). Then, for all n ≥ N, |an − L| < ϵ and |an − M| < ϵ. This
implies that |L − M| < 2ϵ. Since ϵ is arbitrary, L = M.
Now, we define the countability and uncountability of sets.

Definition 14 (Countability). We say a set A is countable if

1. A is finite, or

2. There exists a bijection between A and N.

Note that the second condition is equivalent to saying that elements of A can be writ-
ten as a sequence. Any set that is not countable is uncountable.

Example 6. Z and Q are countable. We can write Z as the sequence

Z = {0,1,−1,2,−2,3,−3, . . .}. (2.4)

We can write Q as the sequence

Q =

{
1
1

,
1
2

,
2
1

,
1
3

,
2
2

,
3
1

, . . .
}

. (2.5)

Theorem 11. The set of real numbers R is uncountable.

We have not formally defined R yet, so we will not prove this theorem yet. However,
a brief sketch of this proof is as follows. Assume that R is countable. Then, we can
write R as a sequence. We can then construct a number that is not in this sequence,
which is a contradiction. Thus, R is uncountable.

We remind ourselves of the definition of the limit of a sequence. Given a sequence
{an}∞

n=1, we say that L ∈ R is the limit of the sequence if,

∀ ϵ > 0,∃ N ∈ N such that ∀ n ≥ N, |an − L| < ϵ.

Proposition 6. The limit of
1

np , p > 0

is 0.

Proof. Take the following inequality.∣∣∣∣ 1
np − 0

∣∣∣∣ < ϵ =⇒ 1
np < ϵ =⇒ n >

1
ϵ1/p .

Now, choose N > 1
ϵ1/p . Then, for all n ≥ N, |an − 0| < ϵ.
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Example 7. Let an = 3n+5
7n−1 . Then, the limit of an is 3

7 . To prove that, we can use the
definition of the limit.∣∣∣∣3n + 5

7n − 1
− 3

7

∣∣∣∣ < ϵ =⇒
∣∣∣∣7(3n + 5)− 3(7n − 1)

7(7n − 1)

∣∣∣∣ < ϵ =⇒
∣∣∣∣ 38
49n − 7

∣∣∣∣ < ϵ.

Note that since n is always positive, we can ignore the absolute value.

38
49n − 7

< ϵ =⇒ n >
38
49ϵ

+
1
7

.

Thus, choose N > 38
49ϵ +

1
7 . Then, for all n ≥ N, |an − 3

7 | < ϵ.

Example 8. Let an = sin(3n)
n . We claim that this sequence approaches 0. To prove this,

we use the definition of the limit.∣∣∣∣sin(3n)
n

− 0
∣∣∣∣ < ϵ =⇒ |sin(3n)|

n
< ϵ.

Note that we cannot explicitly solve for n here, but we can use the fact that the trigono-
metric function is bounded.

|sin(3n)| ≤ 1 =⇒ |sin(3n)|
n

≤ 1
n

We can use this to find the N that satisfies the inequality.

1
n
< ϵ =⇒ n >

1
ϵ

.

If we choose N > 1
ϵ , then for all n ≥ N, |an − 0| < ϵ.

Example 9. Let an = 2n+4
3n4−2n+7 . We claim that the limit of this sequence is 0. To prove

this, we use the definition of the limit.

Proof. We need to show that for all ϵ > 0, there exists N ∈ N such that for all n ≥ N,
|an − 0| < ϵ. This implies that∣∣∣∣ 2n + 4

3n4 − 2n + 7
− 0
∣∣∣∣ < ϵ =⇒

∣∣∣∣ 2n + 4
3n4 − 2n + 7

∣∣∣∣ < ϵ.

We wish to replace this sequence with a sequence that is bigger than it (proving a
larger sequence is less than epsilon directly implies the original sequence is less than
epsilon).

an

bn
≤ cn

dn

The conditions necessary for this are cn ≥ an and dn ≤ bn. Let us consider 3n and
examine the numerator.

2n + 4 ≤ 3n =⇒ n ≥ 4.

Now consider 2n4 and examine the denominator.

3n4 − 2n + 7 ≥ 2n4 =⇒ n4 ≥ 2n − 7 =⇒ n4 ≥ 2n =⇒ n ≥ 2.
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Thus, we have constructed a fraction that is larger than the original fraction.

2n + 4
3n4 − 2n + 7

≥ 3n
2n4 =

3
2

n−3.

Now we can continue with the limit definition.

3
2n3 < ϵ =⇒ n >

(
3
2ϵ

)1/3

.

Thus, choose N >
( 3

2ϵ

)1/3
. Then, for all n ≥ N, |an − 0| < ϵ.

Example 10. Let an = n2. We say that there does not exist an L such that limn→∞ an = L.
This is because the sequence is unbounded.

Proof. We prove this by contradiction. Assume such L exists.

|n2 − L| < ϵ, pick ϵ = 1.

Then, |n2 − L| < 1. This implies that n2 < L + 1. However, we can choose n >
√

L + 1.
This is a contradiction, so there does not exist an L such that limn→∞ an = L.

2.2 Limit Theoreoms

Definition 15 (Convergence). We say that a sequence (xn) is convergent if it converges
to a limit L ∈ R.

lim
n→∞

xn = L. (2.6)

Definition 16 (Bounded). We say that a sequence (xn) is bounded if there exists M ∈ R

such that for all n ∈ N, |xn| ≤ M.

These definitions are connected by the following theorem.

Theorem 12. A sequence that converges is bounded.

Proof. Let our sequence be (xn) and assume limn→∞ xn = L. Choose ϵ = 1. Then, there
exists N such that |xn − L| < 1 for all natural n.

|xn| = |xn − L + L| ≤ |xn − L|+ |L| < 1 + |L|.

by the triangle inequality. So, ∀ n > N, |xn| < |L|+ 1. Let M be

M = max (|x1|, |x2|, . . . , |xN|, |L|+ 1) .

So, for all n ∈ N, |xn| ≤ M.
Note that we can use the contrapositive to the theorem to show that unbounded se-
quences do not converge.
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Theorem 13 (Limit Theorems). These are theorems regarding limits that will prove to
be very useful.

1. If limn→∞ xn = L, α ∈ R, then limn→∞ αxn = αL.

2. If limn→∞ xn = L and limn→∞yn = M, then limn→∞(xn + yn) = L + M.

3. If limn→∞ xn = L and limn→∞yn = M, then limn→∞(xnyn) = LM.

4. If limn→∞ xn = L and limn→∞yn = M, M , 0, then limn→∞
xn
yn

= L
M .

5. If limn→∞ xn = limn→∞ yn = L, then if some sequence zn exists such that

xn ≤ zn ≤ yn

then limn→∞ zn = L.

The last theorem is known as the Squeeze Theorem.

Proposition 7. Consider the sequence below.

xn =

{
2 if n is odd.
5 if n is even.

We claim the limit of this sequence does not exist.

Proof. For all ϵ > 0, there exists N such that n > N, |xn − L < ϵ.

Even case: |5 − L| < ϵ

Odd case: |2 − L| < ϵ

FINISH.
Proof. We now prove the 1st limit theorem. Use the limit definition with α.

|αxn − αL| < ϵ

|α(xn − L)| < ϵ

|α||xn − L| < ϵ =⇒ |xn − L| < ϵ

α
.

We can assume α , 0, as that is a trivial case. Now apply the limit defintion. ∀ϵ >
0,∃N such that n > N.
Proof. We now prove the 2nd limit theorem. Use the limit definition with xn and yn.

∃N1 such that n > N1, |xn − L| < ϵ

2
∃N2 such that n > N2, |yn − M| < ϵ

2
.

Choose N = max(N1, N2). Then, for all n > N,

|xn + yn − L − M| ≤ |xn − L|+ |yn − M| < ϵ

2
+

ϵ

2
= ϵ.

Applying the limit definition, we have proven the 2nd limit theorem.
LIMIT THEOREMS ON EXAM .
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2.3 Divergence.

There are two types of non-converging sequences. For now, we will focus on the simpler
of the two.

Definition 17 (Divergence). Given a sequence (xn), we say that the sequence diverges
to infinity if for all M ∈ R, there exists N ∈ N such that for all n ≥ N, xn > M. We
denote this as

lim
n→∞

xn = ∞. (2.7)

Note that here, ∞ is not a number, but notation to show that the sequence grows with-
out bound.

Equivalently, we can define divergence with a set. Given our sequence (xn), for any
M ∈ R, define

SM = {n ∈ N | xn ≤ M} =⇒ lim
n→∞

xn = ∞ ⇐⇒ ∀M ∈ R,SM is finite.

Example 11. Let xn = n2. We claim that limn→∞ xn = ∞. To prove this, we use the
definition of divergence.

n2 > M =⇒ n >
√

M.

So, choose any M > 0. Then, let N = ⌈
√

M⌉. Then, for all n ≥ N, xn > M.

Example 12. Let xn = n +
√

n − 7. We claim that limn→∞ xn = ∞. To prove this, we use
the definition of divergence.

√
n − 7 > 0 =⇒ n > 49.

If n > 49, then add n to both sides to get n+
√

n− 7 > n. Thus, choose N = max(M,49)
for any M > 0. Then, for all n ≥ N, xn > M.

Theorem 14. If limn→∞ xn = ∞ and yn ≥ xn for all n ∈ N, then limn→∞ yn = ∞.

Proof. We use the definition of divergence. Given M > 0, there exists N such that for
all n ≥ N, xn > M. Since yn ≥ xn, yn > M for all n ≥ N. Thus, yn also satisfies the
definition of divergence.

Definition 18 (Divergence to −∞). Given a sequence (xn), we say that the sequence
diverges to negative infinity if for all M ∈ R, there exists N ∈ N such that for all n ≥ N,
xn < M. We denote this as

lim
n→∞

xn = −∞. (2.8)

Equivalently, we can write this in terms of −M to develop a better intuition for −∞. If
for all M > 0, there exists N ∈ N such that for all n ≥ N, xn < −M, then limn→∞ xn =
−∞.

Theorem 15. Given a sequence (xn), the following is true.

lim
n→∞

xn = ∞ ⇐⇒ lim
n→∞

−xn = −∞.
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This transitions into our limit theorems for divergent sequences.

Theorem 16 (Limit Theoreoms). Consider two sequences (xn) and (yn).

1. If xn → ∞ and yn → L, with L ∈ R, then xn + yn → ∞.

2. If xn → ∞ and yn → ∞, then xn + yn → ∞.

3. If xn → ∞ and yn → L, with L > 0, then xnyn → ∞.

4. If xn → ∞ and yn → ∞, then xnyn → ∞.

5. For xn > 0, xn → ∞ if and only if 1
xn

→ 0.

Proof. We will prove the first limit theorem. Given that xn → ∞ and yn → L, we wish
to show that xn + yn → ∞. Using the definition of divergence, we want to show that

∀M ∈ R, ∃N such that n ≥ N =⇒ xn + yn > M.

First, pick ϵ = 1, implying |yn − L| < 1.

−1 < yn − L < 1 =⇒ yn > L − 1.

We know that xn > M, so
xn + yn > M + L − 1.

Thus, choose N such that n ≥ N =⇒ xn + yn > M + L − 1. This proves the first limit
theorem.
The proof of the second limit theorem is a bit easier, conceptually, as we do not need
to consider a finite limit.
Proof. We will prove the 2nd limit theorem. Given that xn → ∞ and yn → ∞, we wish
to show that xn + yn → ∞. Using the definition of divergence, we want to show that

∀M ∈ R, ∃N such that n ≥ N =⇒ xn + yn > M.

We know that, separately, xn > M1 and yn > M2. Thus, xn + yn > M1 + M2. Choose
N such that n ≥ N =⇒ xn + yn > M1 + M2. This proves the 2nd limit theorem.
Proof. We will now prove the 3rd limit theorem. Given that xn → ∞ and yn → L, we
wish to show that xnyn → ∞. Using the definition of divergence, we want to show that

∀M ∈ R, ∃N such that n ≥ N =⇒ xnyn > M.

Since y2 → L, for all ϵ > 0, there exists a N2 such that for all n > N2, |yn − L| < ϵ. Let
ϵ = L/2.

|yn − L| < L
2

−L
2
< yn − L <

L
2

=⇒ yn >
L
2

.

We know that xn > M, so xnyn > ML
2 , which is greater than M. Choose N such that

n ≥ N =⇒ xnyn > M. This proves the 3rd limit theorem.
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2.4 Monotonic and Cauchy Sequences.

Definition 19 (Increasing and Decreasing Sequences). A sequence (xn) is increasing if
xn+1 ≥ xn for all n ∈ N. A sequence is decreasing if xn+1 ≤ xn for all n ∈ N. A sequence
is monotonic if it is either increasing or decreasing.

Note here, that we are using ≤ and ≥. This means that the sequence can be constant
and still be considered increasing or decreasing.

Example 13. The sequence xn = 1 is both increasing and decreasing.

A function is strictly increasing if xn+1 > xn for all n ∈ N. Similarly, a function is
strictly decreasing if xn+1 < xn for all n ∈ N.

Example 14. The sequence xn = 1 − 1
n is strictly increasing.

Theorem 17. Let (xn) be a sequence that is bounded and monotonic. Then, (xn) con-
verges to a limit L ∈ R.

Proof. We will show that if a sequence is bounded above and monotonic, it converges.
Let (xn) be increasing and bounded above.

S = { xn : n ∈ N} .

Since S is bounded above, it has a supremum (by the Completeness axiom). Let
L = supS. We wish to show that limn→∞ xn = L.

Let ϵ > 0, then there exists an N ∈ N such that xN > L − ϵ (otherwise, L − ϵ would be
the supremum). So, we have the following inequality.

L − ϵ < xN ≤ L.

Since xn is increasing, for all n > N

L − ϵ < xn ≤ L
−ϵ < xn − L ≤ 0

|xn − L| < ϵ.

Thus, limn→∞ xn = L. The proof for decreasing sequences is similar.

Example 15. Let xn = 1 − 1
n . We claim that this sequence converges to 1. To prove this,

we show that the sequence is increasing and bounded above.

It is clear that the sequence is increasing, and we can show that the supremum is 1.
Let ϵ > 0. Then, there exists N ∈ N such that n > N =⇒ 1 − 1

n > 1 − ϵ. Thus, the
sequence is bounded above by 1. Thus, the sequence converges to 1.

Proposition 8. The sequence xn+1 =
(√

2
)xn

is increasing and bounded above by 2.
Thus, the sequence converges.
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Proof. We will use some techniques from calculus to prove this. Let f (x) =
(√

2
)x

.
We wish to show that f (x) > x for all x ∈ R. We can show this by taking the derivative
of f (x).

f ′(x) = ln(
√

2)
(√

2
)x

> 0.

Thus, the function is increasing. To show that it is both increasing and convex, we can
take the second derivative.

f ′′(x) = ln2(
√

2)
(√

2
)x

> 0.

Now, define the function g(x) = f (x)− x and consider its roots. These are the inter-
section points of f (x) and x, one of them being x = 2. Thus, f (x) > x when x < 2.
Thus, the sequence is increasing and bounded above by 2.

Decimal Expansions

Let D = {0,1, . . . ,9}. Now, consider the set D∗, defined below.

D∗ = {(a0, a1, a2, . . .) | an ∈ D} .

This is the set of infinite sequences of elements in D. We wish to construct a map that
maps these sequences to a real, φ : D∗ → [0,1].

(d1,d2, . . .) 7→
∞

∑
i=1

di

10i .

Proposition 9. Let xn = ∑n
i=1

di
10i . Then, the sequence (xn) is increasing and bounded

above by 1.

Proof. We will show that the sequence is increasing. Let xn = ∑n
i=1

di
10i and xn+1 =

∑n+1
i=1

di
10i . Then, xn+1 − xn = dn+1

10n+1 > 0. Thus, the sequence is increasing.

We will now show that the sequence is bounded above by 1. Let xn = ∑n
i=1

di
10i . Then,

xn ≤ ∑n
i=1

9
10i =

1− 1
10n

9 < 1. Thus, the sequence is bounded above by 1.

Theorem 18. If a sequence (xn) is increasing and not bounded above, then the se-
quence diverges to ∞.

lim
n→∞

xn = ∞. (2.9)

If a sequence (xn) is decreasing and not bounded below, then the sequence diverges
to −∞.

lim
n→∞

xn = −∞. (2.10)

Proof. First, we will prove this for increasing sequences.

If (xn) is not bounded, then for all M, there exists an index N such that xN > M.
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Since the sequence is increasing, for all n ≥ N, xn > xN > M. Thus, the sequence di-
verges to ∞. The proof for decreasing sequences is similar.

We will now prove the second part of the theorem. If (xn) is decreasing and not
bounded below, then for all M, there exists an index N such that xN < M. Since
the sequence is decreasing, for all n ≥ N, xn < xN < M. Thus, the sequence diverges
to −∞.

limsup and liminf

Definition 20 (Limit Superior). Given a sequence (xn), we define the limit superior as

limsup xn = lim
N→∞

sup{xn | n ≥ N}. (2.11)

In other words, the limit superior is the limit of the supremum of the tail of the se-
quence.

Intuitively, the limit superior is the largest limit point of the sequence. It describes the
largest value that the tail of the sequence approaches.

Definition 21 (Limit Inferior). Given a sequence (xn), we define the limit inferior as

liminf xn = lim
N→∞

inf{xn | n ≥ N}. (2.12)

In other words, the limit inferior is the limit of the infimum of the tail of the sequence.

If (xn) is unbounded above, then limsup xn = ∞. If (xn) is unbounded below,
then liminf xn = −∞.

Intuitively, the limit inferior is the smallest limit point of the sequence. It describes the
smallest value that the tail of the sequence approaches.

Example 16. Consider the sequence xn = (−1)n + 1. This sequence oscillates between
0 and 2. Thus, limsup xn = 2 and liminf xn = 0.

Let us formally unpack the definition of the limit superior. Let (xn) a sequence, e.g.
bounded. For any N, the set { xn : n > N } is the tail of the sequence and is bounded
above. Therefore, the supremum of this set exists.

bN = sup{ xn : n > N } .

Note that bN is a decreasing sequence: bN+1 ≤ bN. So, bN is bounded and decreasing,
implying that it converges to some real number L.

Theorem 19. For any bounded sequence (xn), the limit superior and limit inferior ex-
ist.

Note that these limits are not necessarily equal! The proof of this is conceptually cov-
ered by the above discussion.



2.4. MONOTONIC AND CAUCHY SEQUENCES. 23

Example 17. Consider the simple alternating sequence, xn = (−1)n. The limit superior
is 1 and the limit inferior is −1.

Theorem 20. For a bounded sequence (xn), the following is true.

lim
n→∞

xn = L ⇐⇒ limsup xn = liminf xn = L.

Proof. ( =⇒ ) Assume limn→∞ = L. This means that for all ϵ > 0, there exists an N
such that if n > N, |xn − L| < ϵ.

n > N =⇒ L − ϵ < xn < L + ϵ.

We can use our unpacking of the limit superior to show that limsup xn = L.

bN = sup{ xn : n > N } ≤ L + ϵ.

Since bN is decreasing, bn ≤ L + ϵ for all n > N. This implies that

lim
N→∞

bn ≤ L + ϵ =⇒ limsup xn ≤ L + ϵ.

Since this is true for any ϵ > 0, limsup xn ≤ L. The proof for liminf xn = L is similar.

( ⇐= ) Assume limsup xn = liminf xn = L.

limsup xn = L =⇒ lim
N→∞

bN = L

Since bN → L, for all ϵ > 0, there exists an N1 such that

n > N1 =⇒ |bn − L| < ϵ

=⇒ bn < L + ϵ

=⇒ sup{ xk : k > n} < L + ϵ

Now consider the limit inferior. If limN→∞ aN = L, then for all ϵ > 0, there exists an N2
such that

n > N2 =⇒ |an − L| < ϵ

=⇒ an > L − ϵ

=⇒ inf{ xk : k > n} > L − ϵ.

Now, for all n > max(N1, N2), we have

L − ϵ < xn < L + ϵ =⇒ |xn − L| < ϵ.

Thus, limn→∞ xn = L.

Definition 22 (Cauchy Sequence). A sequence (xn) is a Cauchy sequence if for all ϵ > 0,
there exists N ∈ N such that for all n,m ≥ N,

|xn − xm| < ϵ. (2.13)

Consider this a limit "in pairs". General convergent sequences get close to a limit, but
Cauchy sequences get close to each other.
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Theorem 21. A sequence that converges is a Cauchy sequence.

Proof. Let (xn) be a convergent sequence with limit L ∈ R. Then, for all ϵ > 0, there
exists an N such that for all n ≥ N, |xn − L| < ϵ.

|xn − xm| = −|xn − L + L − xm| = |(xn − L)− (xm − L)|
≤ |xn − L|+ |xm − L| < 2ϵ.

Thus, (xn) is a Cauchy sequence.

Theorem 22. A Cauchy sequence is bounded.

Proof. Let ϵ = 1. Then, there exists an N such that |xn − xm| < 1 for all n,m ≥ N.

|xn − xN + 1| < 1
|xn| < |xN+1|+ 1.|xn| ≤ max{|x1|, |x2|, . . . , |xN|, |xN+1|+ 1}.

Thus, (xn) is bounded.

Theorem 23. Let (xn) be a sequence in R and is Cauchy. Then, (xn) converges.

Proof. For all ϵ > 0, there exists N̂ such that for all n,m > N̂, |xn − xm| < ϵ. This
implies the following statements.

xn ≤ xN̂+1 + ϵ,

bN̂ ≤ xN̂+1 + ϵ,

limsup xn ≤ bN̂.

Additionally, we have

xn ≥ xN̂+1 − ϵ,

aN̂ ≥ xN̂+1 − ϵ,

liminf xn ≥ aN̂.

So we have that limsup xn ≤ bN̂ ≤ aN̂ ≤ liminf xn + 2ϵ. Since this is true for all ϵ > 0,
limsup xn = liminf xn = L. Thus, (xn) converges.

2.5 Subsequences

Definition 23 (Subsequences). Let (xn) be a sequence. Consider an increasing list
of integers n1 < n2 < . . . nk < . . .. Then, the sequence (yk) defined by yk = xnk is a
subsequence of (xn).

A subsequence of (xn) is a sequence formed by choosing an integer list nk and defining
yk = xnk . This is a new sequence that is a subset of the original sequence.
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Example 18. Let (xn) = (−1)n. Then, the following are subsequences.

yk = x2k = 1,
zk = x2k+1 = −1.

(2.14)

We will also define a subsequence with a restrictive condition.

Example 19. Let xn = (−1)n

n2 . Choose the subsequence of positive terms.

yk = {1/4,1/16,1/36, . . .}.

Definition 24 (Satisfying Subsequence). Let (xn) be asequence and let P(x) be a
boolean statement depending on x, such that P(xn) is true for infinitely many n. We
say that when a subsequence of (xn) satisfies P(x), it is a satisfying subsequence. Let n1
be the smallest n such that P(xn) is true. Then,

nk+1 = smallest n > nk such that P(xn) is true = argminn>nk
P(xn). (2.15)

Note that, by definition, nk+1 > nk and nk+1 always exists, as P(x) is true for infinitely
many n.

Theorem 24. Let (xn) be a sequence in R and let L ∈ R. Then, there exists a subse-
quence (yn) = (xnk) such that (yn)→ L if and only if for all ϵ > 0, the set

{n ∈ N : |xn − L| < ϵ} (2.16)

is infinite.

Proof. ( =⇒ ) Assume that there exists a subsequence (yn) such that (yn) → L. Then,
for all ϵ > 0, there exists N such that for all n ≥ N, |yn − L| < ϵ. Since yn = xnk , this im-
plies that for all n ≥ N, |xnk − L| < ϵ. Thus, the set of n such that |xn − L| < ϵ is infinite.

(⇐= ) Assume that the set of n such that |xn − L| < ϵ is infinite for all ϵ > 0. Then,
we can construct a subsequence (yn) such that |yn − L| < 1 with induction. Let
n1 be the smallest n such that |xn − L| < 1. Then, let n2 be the smallest n > n1
such that |xn − L| < 1/2. Continue this process to get a subsequence (yn) such that
|yn − L| < 1/k for all k ∈ N. Thus, (yn)→ L.
Note that this construction is completed because the subsequence is monotonic. This is
a key part of the proof.

Proposition 10. Q is countable.

Proof. Pick any listing in Q, (q1,q2, . . .).

Theorem 25. If a sequence (xn) converges to L, then every subsequence of (xn) also
converges to L.

Proof. Let (yn) = (xnk) be a subsequence of (xn). Since (xn) → L, for all ϵ > 0, there
exists N such that for all n ≥ N, |xn − L| < ϵ. Since nk ≥ k, for all k ≥ N, |xnk − L| < ϵ.
Thus, (yn)→ L.
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Theorem 26. Every sequence has a monotonic subsequence.

Proof. Let (xn) be a sequence. Define n1 = 1. Then, define nk+1 to be the smallest
n > nk such that xn ≥ xnk or xn ≤ xnk . This defines a monotonic subsequence.

Definition 25 (Dominant Sequence). Given a sequence (xn), we say that a term xn is
dominant if for all m > n, xn > xm. We say that xn is the "greatest" for the "rest" of the
sequence.

We now prove Theorem 26.
Proof. Let D = {n ∈ N : xn is dominant} for a sequence (xn). If D is infinite, then
we can construct a decreasing subsequence. If D is finite, then there exists a domi-
nant term xN such that for all n > N, xN > xn. Thus, we can construct a decreasing
subsequence.
This theorem and definition follows into the Bolzano-Weierstrass Theorem.

Theorem 27 (Bolzano-Weierstrass Theorem). Every bounded sequence has a conver-
gent subsequence.

Proof. Let (xn) be a bounded sequence. By Theorem 26, there exists a monotonic
subsequence (yn). Since (yn) is bounded and monotonic, it converges. Thus, every
bounded sequence has a convergent subsequence.

Definition 26 (Subsequential Limit). Let (xn) be a sequence. A number L is a subse-
quential limit of (xn) if there exists a subsequence (yn) such that (yn)→ L.

Example 20. If (xn)→ L, then the set of all subsequential limits is {L}.

Example 21. Let (rk) be in Q. Then, the set of all subsequential limits is R ∪ {±∞}.

We now provide some theorems on subsequential limits.

Theorem 28. With (xn) being a sequence and Λ being the set of all subsequential limits,
the following is true.

1. Λ ,∅.

2. limsup xn ∈ Λ.

3. supΛ = limsup xn.

4. liminf xn ∈ Λ.

5. infΛ = liminf xn.

6. Suppose zn ∈ Λ ∩ R, then for all n and z = limzn exists, then Λ is closed (i.e.
z ∈ Λ).

7. If the limit of xn exists, then Λ = {L}.

Proof. We prove each part of the theorem.
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1. A direct consequence of the Bolzano-Weierstrass Theorem.

2. Recall the definition of the limsup.

limsup xn = lim
k→∞

(
sup
m≥k

xm

)
.

We must show that there is a subsequence that converges to limsup xn. Let
yk = sup{ xm : m ≥ k}. Then, limyk = limsup xn. For each k, because yk is the
supremum of { xm : m ≥ k}, there exists some index nk ≥ k such that xnk is within
1/k of yk. In other words,

|xnk − yk| <
1
k
=⇒ lim

k→∞
xnk = limsup xn =⇒ limsup xn ∈ Λ.

3. From the previous part, we know that limsup xn ≤ supΛ. Let L ∈ Λ. By def-
inition, there is a subsequence (xn) such that (xnk) → L. By the definition of
limsup,

limsup xn = lim
k→∞

(
sup
m≥k

xm

)
≥ lim

k→∞
xnk = L.

Because this is true for every L ∈ Λ, we can conclude that supΛ ≤ limsup xn.
Thus, supΛ = limsup xn.

4. This is completely analogous to the limsup case.

5. This is completely analogous to the limsup case.

6. This prove is omitted for brevity, but the basic idea is that if zn → z, then for all
subsequential limits zk, zk → z.

7. If a sequence (xn) converges to L, every subsequence also converges to L. So,
there can be no other subsequential limits. Thus, Λ = {L}.

Theorem 29. Let (xn) and (yn) such that (xn) → L and the convergence of (yn) is
arbitrary.

1. limsup xnyn = L limsupyn.

2. liminf xnyn = L liminfyn.



28 CHAPTER 2. SEQUENCES



3 Functions

3.1 Continuity

FINISH LATER.

3.2 Limits of Functions

We have not yet formally defined limits on functions. However, we use them all the
time in examples such as the following.

Example 22. limx→2 x + 3 = 5

Now, let us formally define limits on functions. We will use the following definition.

Definition 27 (Limit of a Function). Let f : A → B be a function, and let L ∈ R ∪
{±∞}. We say that

lim
x→a

f (x) = L (3.1)

for a ∈ A if we have a sequence xn ∈ A such that xn → a and f (xn)→ L.

Note that we require that xn ∈ A. In a standard calculus class, the following limit does
not exist on one side:

Example 23. limx→0
√

x = 0

However, we require the xn to be in the domain of the function, so all xn are positive.

Theorem 30. This theorem is twofold.

1. If f : A → B is continuous at x, then

lim
x→a

f (x) = f (a)

2. If limx→a f (x) = L and limx→a f (x) = M, then L = M.

Additionally, limits of functions are linear in their arguments.

29
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Theorem 31. Let f : A → B and g : A → B be functions. Then if f and g are continuous
at a, we have

1. limx→a(α f (x) + βg(x)) = α limx→a f (x) + β limx→a g(x)

2. limx→a( f (x)g(x)) = limx→a f (x) · limx→a g(x)

3. limx→a

(
f (x)
g(x)

)
= limx→a f (x)

limx→a g(x)

provided that limx→a g(x) , 0.

Example 24. Let f : R \ {3} → R be

f (x) =
1

(x − 3)5

Then,
lim
x→∞

f (x) = 0

Additionally,
lim

x→−∞
f (x) = 0

This is because as x approaches ∞, the denominator approaches ∞, and thus the whole
function approaches 0. The same is true for −∞. Formally, we look at the sequence.

f (xn) =
1

(xn − 3)5

For all M, there exists an N such that for all n > N, we have xn > 3 + M. Thus, we
have

0 ≤ f (xn) <
1

M5

Thus, we have

lim
xn→∞

f (xn) = 0

Proposition 11. Let f : RtoR be a function, then

lim
x→∞

f (x) = lim
x→0+

f
(

1
x

)
This is because as x approaches ∞, 1

x approaches 0.

Theorem 32. Let f : A → B and g : B → C with both being continuous. Let

lim
x→a

f (x) = L

If g is continuous at L, then

lim
x→a

(g ◦ f )(x) = g(L) = lim
y→L

g(y)
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Proof. We know that g is continuous at L, so we have, meaning yn → L. Then, g(yn)→
g(L). If xn → a, then f (xn)→ L. Thus, we have

g( f (xn))→ g(L)

Note that we do not need f to be continuous at a. This is because we are not looking
at the limit of f (x), but rather the limit of g( f (x)). However, we do need f to be
continuous at L. This is because we are looking at the limit of g( f (x)) as x → a, and
we need f (x) to be in the domain of g.

Proposition 12. Let f : A → B. Then we claim that

lim
x→a

| f (x)| =
∣∣∣lim
x→a

f (x)
∣∣∣

Proof. The proof of this is a direct result of the previous theorem. Let g be the absolute
value function g(x) = |x|. Then, we have

lim
x→a

| f (x)| = g
(

lim
x→a

f (x)
)
= g(L) = |L| =

∣∣∣lim
x→a

f (x)
∣∣∣

Thus, we have

lim
x→a

| f (x)| =
∣∣∣lim
x→a

f (x)
∣∣∣

3.3 Power Series

Definition 28 (Power Series). Let (an) be a sequence. The sum

∞

∑
n=0

anxn (3.2)

is called the formal power series with coefficients (an).

Note that here, formal does not mean what it means in conversational English. This is
not a rigorous definition, we are simply giving the definition a "form".

We will be using the convention that 00 = 1. In this section, we want to answer some
big questions about the power series.

1. When does the formal power series make sense?

2. If we define a function

f (x) =
∞

∑
n=0

anxn (3.3)

what are the properties of f ?

3. What does calculus on a power series look like?
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Theorem 33. Let ∑∞
n=0 anxn be a power series. Then, define β := limsupn→∞ |an|

1
n and

R := 1
β .

1. For all |x| < R, the series converges absolutely.

2. For all |x| > R, the series diverges.

3. For all |x| = R, this theorem cannot make a claim.

Here, R is called the radius of convergence of the power series.

Proof. We will prove this theorem using the ratio test. We have

limsup
n→∞

|anxn|
1
n = limsup

n→∞
|an|

1
n |x| = |x| limsup

n→∞
|an|

1
n = β|x|

If |x| > 1
β , then we have that β|x| > 1: the series diverges. If |x| < 1

β , then we have that

β|x| < 1: the series converges. If |x| = 1
β , then we have that β|x| = 1: then we cannot

conclude anything. Thus, we have shown that the series converges absolutely for all
|x| < R and diverges for all |x| > R.

Example 25. Let an = 1 for all n. Then we have the following series.
∞

∑
n=0

xn = 1 + x + x2 + x3 + . . .

So, we apply the theorem.

|an|
1
n = 1, β = 1, R = 1

Thus, the series converges on the interval (−1,1) and diverges on the intervals (−∞,−1)
and (1,∞).

We need to calculate the behavior of the series at the endpoints. We have
∞

∑
n=0

(−1)n = 1 − 1 + 1 − 1 + . . .

∞

∑
n=0

1n = 1 + 1 + 1 + 1 + . . . = ∞

Both of these series diverge. Thus, we have determined that the domain of convergence
of the series is (−1,1).

Example 26. Let an = 1
n! . Then we have the following series.

∞

∑
n=0

xn

n!
= 1 + x +

x2

2
+

x3

6
+ . . . := ex

We will cover this series in more detail later. For now, we will apply the ratio test, as
the root test requires some nuance using Sterling’s approximation.∣∣∣∣ an+1

an

∣∣∣∣ = ∣∣∣∣ n!
(n + 1)!

∣∣∣∣ = ∣∣∣∣ 1
n + 1

∣∣∣∣→ 0
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So limsupn→∞ |an|
1
n = 0. And since limsup |an|

1
n ≤ limsup

∣∣∣ an+1
an

∣∣∣, we have that the
series converges for all x. Thus, we have that the series converges for all x ∈ R.

3.4 Uniform Convergence

Definition 29. Let ( fn) be a sequence of functions f : A → R. We say that fn → f
pointwise if

f (x) = lim
n→∞

fn(x), for all x ∈ A (3.4)

We also say that f is the pointwise limit of ( fn).

Note that this is not a condition for continuity for f (x).

Example 27. Let fn : [0,1]→ R be defined as fn(x) = xn. If x < 1, then xn → 0.

f (x) =

{
0 if x ∈ [0,1)
1 if x = 1

Let us unpack this. Our definition of the pointwise limit means that for all x, fn(x)→
f (x). Formally,

∀ x ∈ A,ϵ > 0, ∃N ∈ N such that n > N =⇒ | fn(x)− f (x)| < ϵ

Note that N might be dependant on x!

Definition 30. We say that fn converges uniformly to f on A if

∀ϵ > 0, ∃N ∈ N such that n > N =⇒ | fn(x)− f (x)| < ϵ (3.5)

Another formal definition is as follows.

∀ϵ > 0, ∃N ∈ N such that n > N =⇒ sup
x∈A

| fn(x)− f (x)| < ϵ (3.6)

The entire function fn(x) lives in the band | fn(x)− f (x)| < ϵ.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

2

4
f (x)

f (x) + ε

f (x)− ε

x
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Example 28. Let fn : [0,2π] → R be defined as fn(x) = 1
n sin(nx). This function oscil-

lates rapidly and then the amplitude shrinks to 0. Note that since |sin(x)| ≤ 1 for all
x ∈ R, |sin(nx)| ≤ 1 for all x ∈ [0,2π]. This implies the following.

0 ≤ sup
x∈[0,2π]

∣∣∣∣sin(nx)
n

∣∣∣∣ ≤ 1
n

So, by the squeeze theorem, fn(x)→ 0 uniformly on [0,2π].

Recall fn(x) = xn. We will show that it does not converge to

f (x) =

{
0 if x ∈ [0,1)
1 if x = 1

Proposition 13.
sup

x∈[0,1]
| fn(x)− f (x)| = 1 for all n ∈ N (3.7)

Pick an n and pick an ϵ > 0. If there exists an x such that xn > 1 − ϵ, then we are done.
If not, choose x such that (1 − ϵ)

1
n < x < 1. Then, we are done.

Theorem 34. If fn(x) is continuous on its domain for all n and fn → f uniformly, then
f is continuous on its domain.

Proof. Let x0 ∈ A be a point in the domain of f . We want to show that f is continuous
at x0. So, we need to show that for all ϵ > 0, there exists a δ > 0 such that

|x − x0| < δ =⇒ | f (x)− f (x0)| < ϵ

Since fn converges uniformly to f , we have that for all ϵ > 0, there exists an N such
that for all n > N, we have

| fn(x)− f (x)| < ϵ

3

Since fn is continuous at x0, we have that for all ϵ > 0, there exists a δ > 0 such that

|x − x0| < δ =⇒ | fn(x)− fn(x0)| <
ϵ

3

Thus, we have

| f (x)− f (x0)| ≤ | f (x)− fn(x)|+ | fn(x)− fn(x0)|+ | fn(x0)− f (x0)|

<
ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ

Why did we need uniform convergence? Note that we picked N first, and we knew
however we changed x by choosing δ small, this would not mess up the outer two
terms.
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Definition 31 (Uniformly Cauchy). Let ( fn) be a sequence of functions f : A → R. We
say that ( fn) is uniformly Cauchy if for all ϵ > 0, there exists an N ∈ N such that

sup
x∈A

| fn(x)− fm(x)| < ϵ (3.8)

for all n,m > N.

Theorem 35. Let ( fn) be a sequence of functions, and let f : A → R be a function
uniformly Cauchy on A. Then, there exists a function f : A → R such that fn converges
to f uniformly.

Proof. The basic idea of this proof is to first find the candidate function f and then
prove that fn converges to f uniformly. Choose x0 ∈ A. Then consider the sequence
( fn(x0)). We claim that this is Cauchy. For all ϵ > 0, there exists an N such that
supx∈A | fn(x)− fm(x)| < ϵ for all n,m > N. But,

| fn(x0)− fm(x0)| ≤ sup
x∈A

| fn(x)− fm(x)|

This implies that for all ϵ > 0, there exists an N such that for all n,m > N, we have that
| fn(x0)− fm(x0)| < ϵ, implying that ( fn(x0)) is Cauchy. Since this sequence is Cauchy,
it has a limit. Define f (x0) to be this limit. In other words, f is the pointwise limit of
( fn(x0)).

Now, we need to show that fn converges to f uniformly. Pick an epsilon > 0. Then,
there exists an N such that for all n,m > N, we have supx∈A | fn(x)− fm(x)| < ϵ. If we
choose m > N, then we have that

fm(x)− ϵ < fn(x) < fm(x) + ϵ

Take this limit to infinity.

fm(x)− ϵ ≤ f (x) ≤ fm(x) + ϵ =⇒ sup
x∈A

| fm(x)− f (x)| ≤ ϵ

This is the definition of uniform convergence. Thus, we have shown that fn converges
to f uniformly.
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4 Calculus

Now, we begin with our rigorous review of calculus.

4.1 Series of Functions

Definition 32. Let gn : A → R be a sequence of functions. Define the following series.

fn(x) =
n

∑
k=1

gk(x) = g1(x) + g2(x) + . . . + gn(x) (4.1)

Say fn converges uniformly to f on A. Then we say f (x) = ∑∞
k=1 gk(x) is the uniformly

convergent series of functions gk(x) on A.

A basic example of this is the general power series.

Theorem 36. Assume ∑∞
n=1 gn(x) converges uniformly on A, and gn(x) is continuous

for all x ∈ A. Then, g(x) = ∑∞
n=1 gn(x) is continuous on A.

Example 29. For a power series, each gn = anxn is continuous on any interval [a,b].

This implies something powerful: if we can show a power series converges unformly,
then it is continuous! Now, recall the Cauchy criterion for a series.

∀ϵ > 0,∃N ∈ N such that n > m > N =⇒
∣∣∣∣∣ n

∑
k=m

ak

∣∣∣∣∣ < ϵ

Similarly, we can define the Cauchy criterion for a series of functions.

Definition 33. For all ϵ > 0, there exists an N ∈ N such that for all n > m > N, we
have

sup
x∈A

∣∣∣∣∣ n

∑
k=m

gk(x)

∣∣∣∣∣ < ϵ (4.2)

Again, we are just saying that the partial sums are uniformly Cauchy.

Now, we define the Weierstrass M-test.

Theorem 37 (Weierstrass M-test). Let (Mk) be a sequence in R, with ∑∞
k=1 Mk converg-

ing. If we have a sequence of functions gk : A → R such that |gk(x)| ≤ Mk for all x ∈ A,
then ∑∞

k=1 gk(x) converges uniformly on A.

37
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Proof. ∣∣∣∣∣ n

∑
k=m+1

gk(x)

∣∣∣∣∣ ≤ n

∑
k=m+1

|gk(x)| ≤
n

∑
k=m+1

Mk

So, (gk) satisifes the Cauchy criterion for uniform convergence, implying that Mk sat-
isfies the Cauchy criterion, implying that ∑∞

k=1 gk(x) converges uniformly on A.
We will now formally define differentiation and integration on power series, which
leads us into the final section of this course, calculus.

Definition 34 (Derivatives and Integrals of Power Series). Let f (x) = ∑∞
n=0 anxn be a

power series. We define the formal derivatives and integrals of f as follows.

f ′(x) =
∞

∑
n=1

nanxn−1,
∫ x

0
f (t)dt =

∞

∑
n=0

an

n + 1
xn+1 =

∞

∑
n=1

an−1

n
xn (4.3)

Note that this not a rigorous definition of the integral, we still have to show these
correspond to the correct functions. They will though, mostly. Let us informally define
a function as integrable if the integral of it "makes sense".

1. Let two functions g and h be integrable on [a,b] such that g(x) ≤ h(x) for all
x ∈ [a,b]. Then, ∫ b

a
g(x)dx ≤

∫ b

a
h(x)dx.

2. Integrals of power series are linear in their arguments.∫ b

a
αg + βh dx = α

∫ b

a
g(x)dx + β

∫ b

a
h(x)dx

3. If g is integrable on [a,b],∣∣∣∣∫ b

a
g(x)dx

∣∣∣∣ ≤ ∫ b

a
|g(x)|dx (Triangle Inequality)

We will soon prove that all continuous functions are integrable.

Theorem 38. If a sequence fn → f uniformly on [a,b], then∫ b

a
fn(x)dx →

∫ b

a
f (x)dx

Proof. Since fn → f uniformly, for all ϵ > 0, there exists an N such that for all n > N,

sup
x∈[a,b]

| fn(x)− f (x)| < ϵ

b − a

Then, we have∣∣∣∣∫ b

a
fn(x)dx −

∫ b

a
f (x)dx

∣∣∣∣ ≤ ∫ b

a
| fn(x)− f (x)|dx ≤

∫ b

a
sup

x∈[a,b]
| fn(x)− f (x)|dx

< (b − a) · ϵ

b − a
= ϵ

as needed.
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Theorem 39. Let ∑n anxn be a power series with radius of convergence R. Then, for
any R̃ < R, the power series converges uniformly on the interval [−R̃, R̃].

Proof. First, let us show that the two series ∑n anxn and ∑n |an|xn have the same ra-
dius of convergence. The radius of convergence is determined by the growth of the
coefficients. Taking the absolute value of the coefficients does not change the growth
rate. Now, choose an R̃ < R. We know that

∞

∑
n=0

|an|R̃n < ∞

meaning the series converges absolutely at x = R̃. For all x ∈ [−R̃, R̃], we have

|anxn| ≤ |an|R̃n

because |x| ≤ R̃. Thus, we define Mn := |an|R̃n. This is a bounding sequence such that

∑
n

Mn < ∞

This condition satisfies the Weierstrass M-test, so we have that the series converges
uniformly on [−R̃, R̃]. Thus, we have shown that the series converges uniformly on
[−R̃, R̃].

Corollary 1. If a power series ∑n anxn has a radius of convergence R, the series con-
verges to a continuous function on the interval (−R, R).

Proof. If −R < x0 < R, then we can choose an R̃ < R such that

−R < −R̃ < x0 < R̃ < R

implying uniform convergence on [−R̃, R̃]. By the previous theorem, we have that the
series converges to a continuous function on [−R̃, R̃]. Since x0 is in the interval, we
have that the series converges to a continuous function on (−R, R).

Lemma 4. If a power series ∑n anxn has a radius of convergence R, then so does

∑
n

nanxn−1 and ∑
n

an

n + 1
xn+1

Theorem 40. Define a function f as follows.

f (x) =
∞

∑
n=0

anxn (4.4)

Suppose f has a radius of convergence R. Then, we define the integral of f as follows.∫ x

0
f (t)dt =

∞

∑
n=0

an

n + 1
xn+1 (4.5)
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Definition 35. Let f : [a,b]→ R. If there exists a function g : [a,b]→ R such that∫ x

a
g(t)dt = f (x)− f (a) (4.6)

then we say g is the derivative of f at x.

Theorem 41. Let f (x) = ∑∞
n=0 anxn be a power series with radius of convergence R.

Then, the derivative of f is continuous on the interval (−R, R).

f ′(x) =
∞

∑
n=1

nanxn−1. (4.7)

Proof. Consider the power series g(x).

g(x) =
∞

∑
n=1

nanxn−1

This function also has a radius of convergence R. Therefore, this converges to a con-
tinuous function on (−R, R). Then, by the integral theorem, we have that∫ x

0
g(t)dt =

∞

∑
n=1

anxn = f (x)− a0

with |x| < R.
Let us get into some examples.

Example 30. Let f (x) = ∑∞
n=0 xn with |x| < 1.

f (x) =
∞

∑
n=0

xn =
1

1 − x
→ f ′(x) =

∞

∑
n=1

nxn−1 =
1

(1 − x)2

Theorem 42 (Abel’s Theorem). Let f (x) = ∑∞
n=0 anxn be a power series with radius of

convergence R. If the series converges at x = R, then, the following limit exists.

lim
x→R−

f (x) =
∞

∑
n=0

anRn (4.8)

The proof for this theorem is tedious, so we will not cover it in detail. The basic idea
is to show that the series converges uniformly on [0, R]. Then, we can use the uniform
convergence theorem to show that the series converges to a continuous function on
[0, R]. Finally, we can use the continuity of the function to show that the limit exists.

Definition 36 (The Exponential Function).

ex :=
∞

∑
n=0

xn

n!
(4.9)
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We define the formal derivative of the exponential function as follows.

d
dx

ex =
∞

∑
n=1

nxn−1

n!
=

∞

∑
n=0

xn

n!
= ex (4.10)

So, the exponential function is its own derivative. Let us prove some interesting prop-
erties of the exponential function using its power series representation. (Later, we will
show that this is the Taylor series for e and is, in fact, the definition of e.)

Proposition 14.
ex+y = exey

Proof. Let us write the power series for ex+y as follows.

ex+y =
∞

∑
n=0

(x + y)n

n!
=

∞

∑
n=0

1
n!

n

∑
k=0

(
n
k

)
xkyn−k =

∞

∑
k=0

∞

∑
m=0

xkym

k!m!
=

∞

∑
k=0

xk

k!

∞

∑
m=0

ym

m!

This is exactly the product of ex and ey, as needed.
The next example is slightly out of the scope of this course, but it is a direct (and
important) use of the exponential function.

Proposition 15.
eix = cos(x) + i sin(x) (4.11)

Proof. Let us write the power series for eix as follows.

eix =
∞

∑
n=0

(ix)n

n!
=

∞

∑
n=0

inxn

n!
=

∞

∑
k=0

x2k

(2k)!
+ i

∞

∑
k=0

x2k+1

(2k + 1)!
= cos(x) + i sin(x)

This is the Taylor series for cos(x) and sin(x), respectively. This is Euler’s formula.
Note that we use somewhat cyclic reasoning here, as we are using the Taylor series for
cos(x) and sin(x) to prove the Taylor series for eix.

This result is, in my opinion, proof that studying the real numbers opens more ques-
tions than answers. After seeing this result in lecture, I knew that the "answers" I
hoped real analysis would have were actually found in complex analysis.

4.2 Derivatives

Now, we will rigorous define the derivative of a function.

Definition 37 (Derivatives). Let f : I → R and x0 ∈ I. The derivative of f at x0 is
defined as

lim
x→x0

f (x)− f (x0)

x − x0
or lim

h→0

f (x0 + h)− f (x0)

h
(4.12)

If this derivative exists, we denote it by f ′(x0) or d f
dx

∣∣
x=x0

. We say f is differentiable at
x0 if the derivative exists.
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For polynomials, we have the following theorem.

Theorem 43 (Power Rule). Let f (x) = ∑N
n=0 anxn be a polynomial. Then, the derivative

of f is given by

f ′(x) =
N

∑
n=1

nanxn−1 (4.13)

This is known as the power rule.

Proof. Take a certain term xn and apply the definition of the derivative.

(x + h)n = xn + nxn−1h + n(n − 1)xn−2h2 + . . .

As h → 0, all of the terms with h in them go to 0. Thus, we have the derivative is nxn−1

Theorem 44. If f is differentiable at x0, then f is continuous at x0.

Proof. We write f in the following form.

f (x) = f (x0) +
f (x)− f (x0)

x − x0
(x − x0)

We take the limit as x → x0 on both sides.

0 + lim
x→x0

f (x0) = f (x)

This is the definition of continuity. Thus, we have shown that if f is differentiable at
x0, then f is continuous at x0.

Proposition 16. The derivative is linear.

(α f + βg)′ (x) = α f ′(x) + βg′(x) (4.14)

Proof. Let f and g be differentiable at x0. Then, we have

(α f + βg)′ (x0) = lim
h→0

α f (x0 + h) + βg(x0 + h)− (α f (x0) + βg(x0))

h

= lim
h→0

(
α

f (x0 + h)− f (x0)

h
+ β

g(x0 + h)− g(x0)

h

)
= α f ′(x0) + βg′(x0)

as needed.

Proposition 17. The derivative of a product is given by the following.

( f g)′(x) = f ′(x)g(x) + f (x)g′(x) (4.15)

This is known as the product rule.
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Proof. Let f and g be differentiable at x0. Then, we have

( f g)′(x0) = lim
h→0

f (x0 + h)g(x0 + h)− f (x0)g(x0)

h
= lim

h→0
( f (x0 + h)g(x0 + h)− f (x0)g(x0 + h) + f (x0)g(x0 + h)− f (x0)g(x0))

We can split this into two limits.

( f g)′(x0) = lim
h→0

f (x0 + h)− f (x0)

h
g(x0 + h) + f (x0) lim

h→0

g(x0 + h)− g(x0)

h
= f ′(x0)g(x0) + f (x0)g′(x0)

as needed.

Proposition 18. The derivative of a quotient is given by the following.(
f
g

)′
(x) =

f ′(x)g(x)− f (x)g′(x)
g2(x)

(4.16)

This is known as the quotient rule.

Proof. Let f and g be differentiable at x0. Then, we have(
f
g

)′
(x0) = lim

h→0

f (x0 + h)g(x0)− f (x0)g(x0 + h)
hg2(x0 + h)

= lim
h→0

(
f (x0 + h)− f (x0)

h
· 1

g(x0 + h)
− f (x0) ·

g(x0 + h)− g(x0)

hg2(x0 + h)

)
We can split this into two limits.(

f
g

)′
(x0) = f ′(x0) ·

1
g(x0)

− f (x0) · lim
h→0

g(x0 + h)− g(x0)

hg2(x0 + h)

= f ′(x0) ·
1

g(x0)
− f (x0) ·

g′(x0)

g2(x0)

as needed.

Proposition 19. The derivative of a composition is given by the following.

( f ◦ g)′(x0) = f ′(g(x0))g′(x0) (4.17)

This is known as the chain rule.

We will omit this proof for brevity.

Theorem 45 (Mean Value Theorem). Let f : (a,b) → R and x0 ∈ (a,b). If x0 is an
extremum of f and f ′(x0) exists, then f ′(x0) = 0.

Proof. Let us assume that x0 is a maximum of f . Then there are three cases.

f ′(x0) > 0, f ′(x0) < 0, f ′(x0) = 0
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Let us assume that f ′(x0) > 0. Then, we have

f ′(x0) = lim
x→x0

f (x)− f (x0)

x − x0

So, there exists a δ > 0 such that for all x ∈ (x0 − δ, x0 + δ), we have

f (x)− f (x0)

x − x0
> 0

Let x0 < x < x0 + δ. Then, x − x0 > 0 implies that f (x)− f (x0) > 0. This implies that
f (x) > f (x0), which is a contradiction. Thus, we have shown that if f ′(x0) > 0, then x0
cannot be a maximum. The same argument holds for the case where f ′(x0) < 0. Thus,
we have shown that if x0 is an extremum of f , then f ′(x0) = 0.

Theorem 46 (Rolle’s Theorem). Let f : [a,b] → R be continuous on [a,b] and differen-
tiable on (a,b). If f (a) = f (b), then there exists a point c ∈ (a,b) such that f ′(c) = 0.

Note that this theorem does not imply that c is the only point such that f ′(c) = 0.
Proof. If f achieves an extremum in [a,b] i.e. there exists an xmin or xmax such that

f (xmin) ≤ f (x) ≤ f (xmax)

for all x ∈ [a,b]. If xmin and xmax are both at end points of [a,b], then f (x) is constant
on [a,b]. If xmin and xmax are both in (a,b), then we can apply the mean value theorem
to show that there exists a point c ∈ (a,b) such that f ′(c) = 0.

We now restate the mean value theorem in a more useful form.

Theorem 47. Assume f is continuous on [a,b] and differentiable on (a,b). Then, there
exists a point c ∈ (a,b) such that

f ′(c) =
f (b)− f (a)

b − a
(4.18)

This statement of the mean value theorem says that the instantaneous rate of change of
f at c is equal to the average rate of change of f on the interval [a,b].

Proof. Let L(x) be a linear function such that L(a) = f (a) and L(b) = f (b).

L(x) = α(x − a) + β

L(a) = α(a − a) + β = f (a)

L(b) = α(b − a) + β = f (b) =⇒ α =
f (b)− f (a)

b − a

L(x) =
f (b)− f (a)

b − a
(x − a) + f (a)

Let g(x) = f (x)− L(x) and g′(x) = f ′(x)− L′(x). Then, we have

g(a) = f (a)− L(a) = 0
g(b) = f (b)− L(b) = 0
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By Rolle’s theorem, we have that there exists a point c ∈ (a,b) such that g′(c) = 0. This
implies that f ′(c)− L′(c) = 0. Thus, we have

f ′(c) = L′(c) =
f (b)− f (a)

b − a

as needed.

Corollary 2. If f is differentiable on (a,b) and continuous on [a,b], then f is uniformly
continuous on [a,b].

In physics terms, we can understand this as "if my speed is never larger than v, than
my average speed is also never larger than v". This is a very useful theorem, as it al-
lows us to show that a function is uniformly continuous on an interval.

Corollary 3. If f is differentiable on (a,b) and there is an x ∈ (a,b) such that f ′(x) = 0,
then f is constant on (a,b).

Corollary 4. If f ′(x) = g′(x) on (a,b), then f (x) = g(x) + C for some constant C for all
x ∈ (a,b).

Corollary 5. If f ′(x) > 0 on (a,b), then for any x,y such that a < x < y < b, f (x) < f (y).
This implies that f is strictly increasing on (a,b).

Theorem 48. Let f : I → f (I) be bijective and continuous. If f ′(x0) exists and is not 0,
then f−1 is differentiable at f (x0) and(

f−1
)′
( f (x0)) =

1
f ′(x0)

(4.19)

This is known as the inverse function theorem.

Proof. Using composition, note that f−1 ◦ f = id.

f−1( f (x)) = x

We take the derivative of both sides and apply the chain rule.(
f−1
)′
( f (x)) f ′(x) = 1
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4.3 Taylor Series

Recall that if a function f (x) = ∑∞
n=0 anxn has a radius of convergence R, then f ′(x) =

∑∞
n=1 nanxn−1 also has a radius of convergence R. By induction,

f (k)(x) =
∞

∑
n=0

n!
(n − k)!

anxn−k (4.20)

also has a radius of convergence R. Let us evaluate this derivative at x = 0.

f (k)(0) =
∞

∑
n=0

n!
(n − k)!

an0n−k =
∞

∑
n=k

n!
(n − k)!

an0n−k = k!ak

We have expanded f (x) around x = 0, this is a Taylor series about x = 0.

Definition 38 (Taylor Series). Let f : I → R be a function that is infinitely differentiable
on I. Then, we define the Taylor series of f at x0 as follows.

f (x) =
∞

∑
n=0

f (n)(x0)

n!
(x − x0)

n (4.21)

Definition 39 (Taylor Remainder). Let f be defined on an open interval containing a
point c.

∞

∑
n=0

f (n)(c)
n!

(x − c)n = f (x) + Rn(x) (4.22)

Here, Rn(x) is the remainder of the Taylor series.

Rn(x) = f (x)−
n−1

∑
k=1

f (k)(c)
k!

(x − c)k

Note that f being equivalent to its Taylor series ⇐⇒ Rn(x)→ 0 as n → ∞.

Theorem 49 (Taylor Theorem). Let f : (a,b)→ R with all derivatives existing on (a,b).
Then, if there exists a point c such that

max
n

sup
x∈(a,b)

∣∣∣ f (n)(x)
∣∣∣ < c (4.23)

then Rn(x)→ 0 as n → ∞ for all x ∈ (a,b).

Lemma 5. Let f : (a,b) → R. Let c ∈ (a,b). Suppose f (n) exist on (a,b), then for all
x ∈ (a,b) with x , c, there exists a y ∈ (c, x) or (x, c) such that

Rn(x) =
1
n!

f (n)(y)(x − c)n. (4.24)
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Proof. Let us fix x , c and n ≥ 1. Then, choose an M such that

M =
n!

(x − c)n

n−1

∑
k=0

(x − c)k

k!
− f (x)︸                     ︷︷                     ︸

Rn(x)

. (4.25)

Rearranging this gives us

f (x) =
n−1

∑
k=0

f (k)(c)
k!

(x − c)k +
M
n!

(x − c)n

If we can show that there exists a y between x and c such that f (n)(y) = M, then we
have shown that the remainder of the Taylor series converges to 0 as n → ∞.

Define g to be

g(t) :=
n−1

∑
k=0

f (k)(t)
k!

(x − c)k +
M
n!

(t − c)n − f (t)

g(c) = f (0) + 0 − f (0) = 0

g′(c) = f ′(0) + 0 − f ′(0) = 0

g′′(c) = f ′′(0) + 0 − f ′′(0) = 0
...

g(k)(c) = 0

for all k < n. By a repeated use of Rolle’s theorem, there exists an xn ∈ (c, xn) such that
g(n)(xn) = 0.
Now, we will prove the theorem
Proof. If maxn supx∈(a,b) | f (n)(x)| < c, then we have that

|Rn(x)| ≤ 0
n!

|x − c|n =⇒ lim
n→∞

Rn(x) = 0

as needed.

Example 31. Let f (x) = ∑∞
n=0

xn

n! = ex be the exponential function. Then, on the interval
(−M, M), we have

max
n

sup
x∈(−M,M)

∣∣∣ f (n)(x)
∣∣∣ ≤ eM

So, the Taylor series converges to ex on the interval (−M, M). This works for any M.
Therefore, we have that the Taylor series converges to ex for all x ∈ R.

Consider the following limit.

lim
x→a

f (x)
g(x)

when lim
x→a

f (x) = lim
x→a

g(x) = 0 (4.26)
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Theorem 50. Assume limx→a f (x) = limx→a g(x) = 0 and limx→a f ′(x) , 0,
limx→a g′(x) , 0. Then, we have

lim
x→a

f (x)
g(x)

=
limx→a f ′(x)
limx→a g′(x)

(4.27)

We can generalize the derivative to higher order derivatives.

lim
x→a

f (x)
g(x)

=
limx→a f (n)(x)
limx→a g(n)(x)

(4.28)

This is known as L’Hospital’s rule.

Proof. Let us Taylor expand f at x = a.

f (x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2
(x − a)2 + . . . +

f (n)(a)
n!

(x − a)n

Given that f (a) = 0 and f ′(a) , 0, we have

f (x) = f ′(a)(x − a) +
f ′′(a)

2
(x − a)2 + . . .

g(x) = g′(a)(x − a) +
g′′(a)

2
(x − a)2 + . . .

Now, let us take the ratio of the functions.

f (x)
g(x)

=
f ′(a)(x − a) + f ′′(a)

2 (x − a)2 + . . .

g′(a)(x − a) + g′′(a)
2 (x − a)2 + . . .

=
f ′(a) + f ′′(a)

2 (x − a) + . . .

g′(a) + g′′(a)
2 (x − a) + . . .

lim
x→a

f (x)
g(x)

=
f ′(a) + 0 + . . .
g′(a) + 0 + . . .

=
f ′(a)
g′(a)

To prove the general case, we can use the same argument. We can Taylor expand f
and g at x = a.

f (x) =
f (n)(x − a)n

n!
+O(x − a)n+1

g(x) =
g(n)(x − a)n

n!
+O(x − a)n+1

Now, we can take the ratio of the functions and take the limit.

f (x)
g(x)

=
f (n)(x−a)n

n! +O(x − a)n+1

g(n)(x−a)n

n! +O(x − a)n+1
=

f (n)(x − a)n +O(x − a)n+1

g(n)(x − a)n +O(x − a)n+1

lim
x→a

f (x)
g(x)

=
limx→a f (n)(a)(x − a)n + 0
limx→a g(n)(a)(x − a)n + 0

=
limx→a f (n)(a)
limx→a g(n)(a)

as needed.
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Example 32. To calculate the following limit, we can use L’Hospital’s rule.

lim
x→0

(sin x − x)2

(cos x − 1)3

Let us expand the numerator and denominator using Taylor series.

sin x − x = −x3

6
+O(x5)→ x6

36
+O(x8)

cos x − 1 = −x2

2
+O(x4)→−x6

8
+O(x8)

We take the ratio of the two functions.

(sin x − x)2

(cos x − 1)3 =
x6

36 +O(x8)

− x6

8 +O(x8)
=

1
36

−1
8

= −2
9

Proposition 20.

lim
n→∞

(
1 +

1
n

)n
= e (4.29)

Proof. Let the limit be L.

log L = lim
n→∞

n log
(

1 +
1
n

)
=

1
n

log (1 + n) = 1

So, we have log L = 1. Thus, we have L = e.
We have ignored an important fact about functions and their Taylor series. We showed
that the Taylor series of a function f converges on the domain of convergence of f .
However, we did not show that the Taylor series converges to f . In fact, this is not true
in general.

Definition 40 (Analytic Functions). A function f is said to be analytic at a point x0 if
there exists a radius of convergence R > 0 such that the Taylor series converges to f (x)
for all x ∈ (x0 − R, x0 + R).

4.4 The Riemann Integral

The Riemann integral (or the Darboux integral) was the first rigorous definition of the
integral on an interval. We first define some other useful terms.

Definition 41 (Partition). Let f : [a,b] → R. Assume f is bounded. We define the
following.

M( f ,S) = sup
x∈S

f (x), m( f ,S) = inf
x∈S

f (x) (4.30)

A partition of [a,b] is a choice of points

a = t0 < t1 < t2 < . . . < tn−1 < tn = b (4.31)
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The upper Darboux sum of f with respect to a partition P is given by

U( f , P) =
n

∑
k=1

M( f , [tk−1, tk])(tk − tk−1) (4.32)

The upper Darboux integral of f is given by

U( f ) = inf
P

U( f , P) (4.33)

Intuitively, this is the area of rectangles "above" the graph of f .

The lower Darboux sum of f with respect to a partition P is given by

L( f , P) =
n

∑
k=1

m( f , [tk−1, tk])(tk − tk−1) (4.34)

The lower Darboux integral of f is given by

L( f ) = sup
P

L( f , P) (4.35)

Example 33. Let f : [a,b] → R be defined by f (x) = 2. Then, for any partition P, we
have

U( f , P) =
n

∑
k=1

M( f , [tk−1, tk])(tk − tk−1)

= 2
n

∑
k=1

(tk − tk−1)

= 2
n

∑
k=1

(tk − tk−1) = 2(tn − t0) = 2(b − a)

Similarly, L( f ) = 2(b − a).

The upper and lower Darboux sums being equal is not a coincidence. In fact, this
is the definition of the Riemann integral.

Theorem 51. For any partition P,

m( f , [a,b])(b − a) ≤ L( f , p) ≤ U( f , P) ≤ M( f , [a,b])(b − a) (4.36)

Proof. By definition, we have

U( f , P) =
n

∑
k=1

M( f , [tk−1, tk])(tk − tk−1) ≤
n

∑
k=1

M( f , [a,b])(tk − tk−1) = M( f , [a,b])(b − a)

Since m( f , [a,b]) ≤ M( f , [tk−1, tk]), we have

n

∑
k=1

m( f , [tk−1, tk])(tk − tk−1) ≤
n

∑
k=1

M( f , [tk−1, tk])(tk − tk−1) ≤ U( f , P)
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So, we have

m( f , [a,b])(b − a) ≤ L( f , P) ≤ U( f , P) ≤ M( f , [a,b])(b − a)

Corollary 6. If f is bounded, then U( f ) and L( f ) are bounded as well.

Proof. By the previous theorem, we have that there exists A, B such that

A ≤ L( f , P) ≤ U( f , P) ≤ B

This implies that

A ≤ L( f ) ≤ B A ≤ U( f ) ≤ B

as needed.
Is it obvious that L( f ) ≤ U( f ), always?

Definition 42 (Integrability). A function f is said to be integrable on [a,b] if L( f ) =
U( f ). In this case, we define the Riemann integral of f as∫ b

a
f (t)dt = L( f ) = U( f ) (4.37)

If L( f ) ,U( f ), then we say that f is non-integrable on [a,b].

Example 34. We have previously shown that the constant function f (x) = c is inte-
grable on [a,b]. ∫ b

a
f (t)dt =

∫ b

a
cdt = c(b − a)

Now, let us define the width of a partition P as follows.

w(P) = max
k

(tk − tk−1) (4.38)

Lemma 6. Let f : [a,b] → R be bounded and define B := supx | f (x)|. Then, if P and Q
are partitions of [a,b] with P ⊆ Q and Q has exactly ℓ more points than P, then

1. L( f , P) ≤ L( f , Q) ≤ U( f , Q) ≤ U( f , P)

2. 0 ≤ L( f , Q)− L( f , P) ≤ 2ℓBw(P)

3. 0 ≤ U( f , P)− U( f , Q) ≤ 2ℓBw(P)


