Aniket Deshpande

(+1) 908-421-1543 aniket4@illinois.edu aniketdeshpande.com

Education	University Of Illinois, Urbana-Champaign	Urbana, IL
	B.S. Physics, Specialization in Mathematical Physics	2023 - 2026 (expected)
	• <i>Relevant Coursework:</i> Machine Learning Theory, Numerical Analysis, Stochastic Processes, Statistics & Probability I & II, Data Structures & Algorithms, Real Analysis, Quantum Information Theory, Quantum Mechanics I, Electromagnetism I, Classical Mechanics I & II, Special Relativity & Mathematical Methods, Differential Equations, Abstract Linear Algebra	
	• <i>Research Interests</i> : Tensor methods for quantum information, quantum-inspired modeling for mathematical finance, physics-informed machine learning, & neural computation	
	Minors in Mathematics and Scientific Computing	
Projects	Quantum Circuit Volume for Graph Models	08.2024 - 12.2024
	 Developed quantum circuit methods to simulate graph channels, optimizing simulation cost and complexity analysis for quantum walks in the birth-death process. 	
	 Constructed lower and upper bounds of O(√n) and O(n), respectively, for simulation length of a quantum random walk on a birth-death process. Poster developed with the <i>Illinois Mathematics Lab</i> available on website. 	
Research	 Computation & Neurodynamics Lab Urbana, IL Developing and applying neural-symbolic regression technic interpretable mathematical models from complex datasets, of underlying neural mechanisms. PI: Dr. Matthew Singh 	01.2025 - Present ques to uncover enhancing understanding
	 Lab for Numerical Parallel Algorithms Urbana, IL 09.2024 - Present Performing research in quantum complexity and quantum Monte Carlo methods for tensor networks. Implementing Monte Carlo methods for contractions (traces, etc.) of arbitrary tensor networks. PI: Dr. Edgar Solomonik 	
	 Polymer Physics Theory Group Urbana, IL 08.2024 - 01.2025 Performed computational simulations of free-draining bottle brush polymers with explicit side-chains using a coarse-grain model Refactored and improved coarse-grain model using stochastic differential equations and brownian motion results. Implemented the model in C. Visualized relationships between various physical attributes of the bottle brush polymers in Python. 	
Industry	 Space Dynamics Laboratory Ionospheric Analyst Intern 05 - 08.2024 Developed a Python scraper to expedite the data collection of NICT ionograms to 600+ ionograms downloaded per hour. Researched numerical analysis methods to improve the noise reduction of ionograms 	
	using various filtering methods. Implemented filters in Python and Julia and ran statistical analysis (PSNR, MSE, SSIM) to compare efficiencies.	
	• Researched methods to improve automatic ionogram scalers using deep learning architecture (CNNs) and techniques.	
Skills	Programming: Python, C/C++, Java, Julia, Mathematica	
	Libraries: Matplotlib, SciPy, NumPy, Pandas	
	Utilities: Anaconda, Git, Jupyter, Shell, LTEX	