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Motivation

Tensor networks have emerged as an essential classical framework for efficiently representing
quantum states and operators, with applications in quantum simulation, quantum chemistry,
and condensed matter physics. However, contracting general tensor networks is a computa-
tionally difficult task known to be #P-hard in the general case. Exact methods become expen-
sive as system size increases, requiring scalable and accurate approximation algorithms.
Annealed Importance Sampling (AIS) combined with Markov Chain Monte Carlo (MCMC) tech-
niques offers a promising step forward. By constructing a series intermediate distributions that
gradually transition to the target distribution, AIS estimates otherwise intractable contraction
values.
In this work, we systematically explore the performance of AIS-based tensor network contrac-
tion methods compared to naive Monte Carlo sampling across various tensor network configu-
rations. Our results show clear advantages in computational efficiency, especially in large-scale
diagonally-dominant tensor networks relevant to practical quantum circuit simulations.

Methods

A tensor network (TN) is a pair T = (G, {Tv}v∈V), where

1. G = (V, ℰ) is an undirected graph. Nodes v ∈ V are tensors; edges e ∈ ℰ are shared
indices.

2. Each tensor Tv is indexed by the edges incident to v and stores values on the discrete
domain.

The contraction we wish to approximate is
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where x specifies a value for each edge index, D ∶=
∏

e∈ℰ[de] denotes the domain of all edge
assignements and Tv(x) represents the value of tensor node Tv under the assignment x.

Annealed Importance Sampling (AIS). Define a continuum of distributions
��(x) ∝  (x)�, � ∈ [0, 1].

with a ladder 0 = �0 < �1 <⋯ < �K = 1 [2]:

Initialize. Sample x0 ∼ ��0 (uniform).
Glauber step at �k. Perform Nmix steps of single-site updates. At each step, select an
edge e ∈ ℰ uniformly at random and resample from the conditional:

xe ∼ ��k(xe ∣ x⧵e) ∝
∏

v∈V
e incident to v

Tv(… , xe, … )�k.

Here, Nmix denotes the number of Glauber updates per chain per �k, chosen to ensure
adequate mixing before estimating expectations.
Incremental weight. For each �k, we draw N independent samples x(k−1)1 , … , x(k−1)N ∼ ��k
via Glauber dynamics, and compute:
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The AIS estimator is

Ẑ = Z0 ⋅
K∏

k=1
ŵk.

Methods (Continued)

AIS stems from the telescoping identity

Z = Z0
K∏

k=1
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Z�k−1

, Z� ∶=
∑

x
 (x)�,

where Z0 =
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e∈ℰ de and each ratio admits the expectation form
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where ��k (x) ∝  (x)�k .

To quantify estimator accuracy for each ratio, we report the geometric mean relative error
across multiple trials:
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where �̂(t)k is the t-th estimate of the ratio Z�k∕Z�k−1.
Key idea. Glauber dynamics rapidly mixes each chain towards ��k, while AIS converts local
samples into a global estimate through the product of expected ratios.

Test Structures

We test our algorithm on various tensor networks by evaluating its relative error and scaling
behavior under several diagnostic settings.

A B

CD

This tensor network diagram corresponds to the contraction∑ijklAijBjkCklDli = Tr(ABCD).
We extend this trace of products to a lattice of nine tensors, arranged in a 3 × 3 grid, where
each interior tensor contracts with its four neighbors (north, south, east, west) and each
edge tensor contracts with 2−3 others, forming a closed square grid with periodic or open
boundary conditions. The total contraction sums over all internal indices and represents a
natural testbed for scaling behavior and high-dimensional complexity.

Z =
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)

We construct diagonally-dominant tensors in our tests. To make a tensor Tij diagonally-
dominant, the elements when i = j have higher values than when i ≠ j. We do this by
defining diagonal and noise components.

D(i1, i2, … , in) = {
1, if i1 = i2 = ⋯ = in
0, otherwise

, N(i1, i2, … , in) = 1.

With a noise level �, the final d-dimensional, order-n tensor is:

Tv = (1 − �)D + ( �dn)N.

This structure is well-suited for testing AIS algorithms due to their structured yet non-trivial
nature. The majority of the total probability mass is concentrated on a small subset of con-
figurations, making Glauber updates difficult in the high-� regime. Additionally, diagonally-
dominant tensors are integral to quantum circuit simulation, as they naturally represent T,
CZ, and phase gates, which remain prevalent in variational quantum algorithms and stabi-
lizer codes.

Test Results

Figure 1. *

Uniform vs AIS Sampling Error Across �. Geometric mean relative error of the single-step ratio estimate as a
function of annealing step �k with shaded standard error.

Figure 1 compares uniform sampling and AIS under matched sampling budgets across �. At
� ≈ 0, the target distribution is nearly uniform, so both estimators (sampling from or mixing
towards the same distribution) achieve comparable accuracy. As � increases and the distri-
bution sharpens, uniform sampling becomes increasingly biased, while AIS leverages local
MCMC Glauber updates to maintain accuracy.

Figure 2. *

AIS Mixing vs Glauber Updates. Geometric mean relative error of the single-step AIS ratio estimate after
N = 20 chains and 30 trials per setting, with 95% confidence intervals.

Figure 2 examines how MCMC mixing affects AIS accuracy across noise levels �. For small
� (structured tensors), even few Glauber updates yield accurate estimates. For larger � (near-
uniform tensors), additional mixing has little effect. This reflects a signal-to-noise tradeoff: as
� → 1, the true ratio Z(�k)∕Z(�k−1) → 1, reducing sensitivity to configuration quality and limiting
the gains from extra mixing.
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