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Abstract

We study how low-rank structure in recurrent neural network connectivity shapes spectral
outliers and stability transitions in driven, nonlinear dynamics. We first reproduce spectral and
dynamical predictions of balanced OU-driven RNNs from [6], validating raw trajectory phe-
nomenology, spectral fingerprints (Ginibre bulk with balanced outlier at −b), DMFT-simulation
agreement for mean and variance dynamics, and the largest Lyapunov exponent behavior. We
then present new empirical tests of a low-rank trajectory-averaged Jacobian outlier proxy and
its relationship to the largest Lyapunov exponent λ1. Our core contribution is testing whether
this proxy qualitatively predicts stability boundaries in driven networks. We introduce a formal
non-stationary low-rank DMFT with overlap variables κ(t) as a conceptual framework only; all
numerical results in this report are based on a trajectory-averaged Jacobian proxy rather than a
full low-rank NS-DMFT solver. We validate the proxy against direct eigenvalue and Lyapunov
exponent measurements, showing it qualitatively tracks stability trends but remains a heuristic
rather than a rigorous stability criterion.
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1 Introduction

How fast and reliably a recurrent neural population tracks a time-varying input depends on intrinsic
timescales, recurrent variability (including chaos), and external noise. We study a continuous-time
recurrent rate network (RNN) where synaptic currents hi(t) evolve according to

τ
dhi

dt
=−hi(t)+

N∑
j=1

Ji jφ(h j(t))+ I i(t)+ηi(t), (1)

with timescale τ, connectivity matrix J, nonlinearity φ, external input I i(t), and independent noise
ηi(t). Hereφ is a ReLU nonlinearity and I i(t) is an Ornstein-Uhlenbeck (OU) input. The gain parameter
g controls the variance of random connectivity and sets the spectral radius ≈ g of the bulk eigenvalues
(Ginibre circular law). The balance parameter b controls a rank-one mean connectivity term − b

N 11⊤

that generates a real outlier eigenvalue at −b, distinct from the bulk spectrum. The classic dynamic
mean-field analysis predicts a transition to chaos in random RNNs as g increases [10]. A time-resolved
mean-field account for rate networks (and a clean link to information rates) was missing until recently.
[6] developed a non-stationary dynamic mean-field theory (NS-DMFT) that explains how tight balance
improves encoding and predicts a near-linear growth ofmutual information ratewith balance parameter
b for Ornstein-Uhlenbeck (OU) inputs, in both noisy and chaotic regimes.

DMFT provides key advantages over direct numerical simulation: it yields analytical or semi-
analytical predictions that reveal scaling laws, captures the large-N limit exactly, and provides inter-
pretable order parameters (covariances, overlaps) that connect microscopic connectivity to macroscopic
observables. This theoretical framework is essential for understandingwhy certain connectivity patterns
produce specific dynamical behaviors, rather than merely observing them in simulations.

This project pursues two complementary goals. First, we reproduce core results on OU-driven
balanced random networks and non-stationary DMFT from Engelken et al. and related work, including
trajectory statistics, spectral fingerprints of balanced connectivity (Ginibre bulk with balanced outlier
at −b), DMFT-simulation agreement for mean and variance dynamics, and the transition of the largest
Lyapunov exponent with the gain parameter g. Second, we introduce and test a low-rank trajectory-
averaged Jacobian outlier proxy and compare it to the largest Lyapunov exponent λ1 as our main new
contribution.

Our core research question is: Can a low-rank outlier proxy, computed from a trajectory-
averaged Jacobian, qualitatively predict stability of a driven balanced RNN, and how does
it compare to the largest Lyapunov exponent? We explore DMFT-inspired spectral proxies and
compare them against Lyapunov exponents in finite-N , finite-time simulations. We introduce a formal
non-stationary low-rank DMFT with overlap variables κ(t) as a conceptual framework. All low-
rank numerical results are based on a trajectory-averaged Jacobian proxy rather than a full low-rank
NS-DMFT solver.

1.1 Reproduction of Non-Stationary DMFT

Our first objective is to reproduce the non-stationary DMFT results of Engelken and collaborators
for balanced rate networks driven by time-varying inputs [6]. In this model, currents hi(t) evolve
according to Eq. (1) with ReLU nonlinearity φ(x)=max(0, x) and common OU input I(t) scaled by b.
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For panels A, B, and D, connectivity has a rank-one mean ("tight balance") plus i.i.d heterogeneity:

Ji j = gWi j − b
N

11⊤, Wi j ∼N

(
0,

1p
N

)
, (2)

where W is scaled so the bulk has radius g (circular law). For panel C (DMFT reproduction), the
connectivity matches the DMFT solver exactly: Ji j = J0

N +gWi j where J0 = 1.0 andWi j ∼N(0,1/
p

N),
with the same OU statistics and ReLU nonlinearity used in both the DMFT solver and comparison
simulations. Decomposing hi = m+ h̃i with m(t) = 1

N
∑

i hi(t) leads to coupled mean-fluctuation
equations and the balance equation for the population rate ν(t) = 1

N
∑

iφ(m+ h̃i(t)). In the tight-
balance limit, ν(t)≈ I(t)/J0 and the mean mode acquires an effective timescale τeff = τ/b, showing that
balance accelerates mean dynamics b-fold. Non-stationary DMFT closes on a pair of time-resolved
order parameters: the two-time covariance of fluctuations c(t, t′)= 1

N
∑

i〈h̃i(t)h̃i(t′)〉 and an auxiliary
kernel encoding response; this yields predictions for the response spectrum, the largest Lyapunov
exponent, and frequency-resolved information transmission. We reproduce the spectral fingerprint of
the connectivity: a Ginibre-like bulk of radius ≈ g and a single real outlier at λout =−b generated by
the rank-one mean term (see Sec. 3.1).

1.2 Extension Towards Low-Rank Structure

Building on the balanced baseline, our second aim is to introduce low-rank structure atop the random
bulk and study how spectral outliers born from the structure forecast macroscopic transitions in driven
networks. A connectivity matrix has low-rank structure when it can be decomposed as J = gW +S
where S has rank R ≪ N (i.e., S = ∑R

k=1 mkukv⊤k for R pairs of vectors {uk,vk}). This means the
structured component S spans only a low-dimensional subspace, in contrast to the full-rank random
bulk gW . Low-rank structure is ubiquitous in neuroscience (e.g., task-specific projections, feedforward
pathways, or learned connectivity patterns) and can dramatically alter network dynamics by introducing
isolated eigenvalues (“outliers”) that detach from the bulk spectrum. We consider a rank-1 perturbation
S = muv⊤ added to J, analyze the resulting outlier eigenvalue, and test whether a trajectory-averaged
Jacobian proxy can predict stability transitions under drive.

Recent work shows that, under high-dimensional inputs or perturbations, recurrent networks with
low-rank structure often exhibit low-rank suppression: variability aligned with the structured modes is
actively damped and the resulting dynamics remain high-dimensional despite low-rank connectivity
[12]. This clarifies when “low-rank structure⇒ low-dimensional dynamics” fails, and motivates a time-
resolved treatment under drive. Our goal is complementary: we test a trajectory-averaged Jacobian
outlier proxy for when a finite-rank outlier approaches zero and compare it to the largest Lyapunov
exponent. We estimate the low-rank outlier via a trajectory-averaged gain proxy, yielding a practical
heuristic that can be validated against direct Lyapunov measurements.1

1See, e.g., [8] for low-rank RNN theory and classical outlier results in spiked random matrices [1, 4].
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2 Methods

2.1 Network & Balance Scaling

We study a continuous-time rate network with N units. Each unit has synaptic current hi(t) and rate
φ(hi(t))=max(0,hi(t)) (ReLU). The dynamics are governed by

τ
dhi

dt
=−hi(t)+

N∑
j=1

Ji jφ(h j(t))+bI(t)+ηi(t). (3)

The connectivity matrix J has entries Ji j that depend on the experimental context.
(a) Balanced RNN for panels A, B, D:

J = gW − b
N

11⊤, Wi j ∼N

(
0,

1
N

)
, (4)

where W ∈ RN×N is a real Ginibre matrix with entries Wi j ∼ N(0,1/N), so its spectrum follows a
circular law of radius g [9]. The mean term − b

N 11⊤ contributes a single real eigenvalue at −b. The OU
drive IOU(t) has correlation time τS and variance parameter σOU, scaled by b in the dynamics. We use
ReLU nonlinearity φ(x)=max(0, x).

(b) OU-driven DMFTmodel for panel C:

J = J0

N
11⊤+ gW , Wi j ∼N

(
0,

1
N

)
, (5)

where J0 = 1.0 andW is the same real Ginibrematrix. This matches the nonstationary DMFT equations
of [6], and we use their solver (solve_ns_dmft_ou) as implemented. The same OU statistics (τS , σOU)
and ReLU nonlinearity are used in both the DMFT solver and the comparison simulations. ηi are
independent Gaussian white-noise inputs with 〈ηi(t)ηi(t′)〉 =σ2τδ(t− t′), and I(t) is a common input
(OU process with correlation time τS). We define the population mean and fluctuations as

hi(t)= m(t)+ h̃i(t), m(t)= 1
N

N∑
i=1

hi(t), 〈h̃i(t)〉 = 0. (6)

Averaging 3 and using the mean connectivity yields the mean dynamics

τ
dm
dt

=−m(t)−bJ0ν(t)+bI(t), ν(t)= 1
N

N∑
i=1

φ
(
m(t)+ h̃i(t)

)
. (7)

Solving for ν(t) gives the balance equation

ν(t)= 1
J0

I(t)− 1
bJ0

(
τ

dm
dt

+m(t)
)
. (8)

In the tight-balance limit b →∞, ν(t)≈ I(t)/J0 and the mean mode has effective timescale τeff = τ/b.

Spectral Expectation. For the balanced connectivity J = gW − b
N 11⊤ with Wi j ∼N(0,1/N), the

empirical spectrum converges to the uniform measure on the disk of radius g (circular law; 5, 11),
and the rank-one mean contributes a single real outlier at −b (see 9). This is the spectral baseline that
Fig. 2(b) visualizes.
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2.2 Non-Stationary DMFT Closure

Following [6], we recall the non-stationary DMFT equations for the mean m(t) and covariance c(t, s)
under OU drive. The residual input h̃(t) (dropping index i by exchangeability) is Gaussian in the large-
N limit. Non-stationary DMFT closes the dynamics for the mean m(t), the two-time autocorrelation
c(t, t′)= 〈h̃(t)h̃(t′)〉, and an auxiliary response kernel k(t, t′) via

τ
dh̃
dt

=−h̃+η(t)+ξ(t), 〈η(t)〉 = 0, 〈η(t)η(t′)〉 = q(t, t′), (9)

where q(t, t′) = g2〈φ(m(t)+ h̃(t))φ(m(t′)+ h̃(t′))〉. Differentiating c(t, t′) and k(t, t′) yields the self-
consistent system

τ∂t′ c(t, t′)=−c(t, t′)+k(t, t′), τ∂t′k(t, t′)=−k(t, t′)+ q(t, t′)+τσ2δ(t− t′), (10)

withmean update τdm/dt =−m−bJ0ν+bI(t) and ν(t)= 〈φ(m(t)+h̃(t))〉. For theReLU nonlinearity
φ(x)=max(0, x), one of the Gaussian integrals in q admits a closed form (LemmaA.1), enabling efficient
quadrature for the remaining integrals. We solve the NS-DMFT equations of [6] on a triangular grid
using the implementation provided in the original work (or a matching reimplementation), with ReLU
Gaussian moments evaluated as in Lemma A.1. For comparison simulations of the network we use
Euler-Maruyama with step ∆t matched to the DMFT grid.

Lyapunov exponent estimation (panel D). For panel D, we estimate the largest Lyapunov exponent
λ1 using a Benettin method [3] applied to the balanced OU-driven RNN (same model as panel A:
J = gW − b

N 11⊤ with OU input scaled by b). We sweep g from 0.6 to 1.8 with fixed b = 10, τS =
1.0, σOU = 0.5, using N = 1000 and averaging over nseeds = 5 seeds. The method uses periodic
renormalization of the perturbation vector and reports the per-unit-time growth rate.

2.3 Finite-rank Outliers

We study connectivity with low-rank structure:

J = gW − b
N

11⊤+S, S =
R∑

k=1
mkukv⊤k , (11)

where W ∈ RN×N has entries Wi j ∼ N(0,1/N), so its spectrum follows a circular law of radius g.
Here R = 1 in this work. The vectors uk,vk are quenched with ∥uk∥2 = ∥vk∥2 = 1, and we assume
uk,vk ⊥ 1 in the low-rank experiments and proofs. This low-rank structure is motivated by prior work
on structured RNNs [8], low-rank DMFT [7], and spiked random matrix theory [2, 1]. Using Sylvester’s
determinant theorem and the matrix determinant lemma, the characteristic polynomial reduces to a
finite R×R determinant, whose roots describe the detached outliers (2; circular-law resolvent control
via 11, 5). For any z with zI − gW invertible,

det
(
zI − (gW +S)

)= det(zI − gW) det
(
IR −MRW (z)

)
, (12)

where M = diag(m1, . . . ,mR) andRW (z)=V⊤(zI−gW)−1U withU = [u1, . . . ,uR] andV = [v1, . . . ,vR].
For |z| > g, isotropic resolvent limits yield RW (z)→−z−1V⊤U , and outliers satisfy

det
(
zIR +MV⊤U

)= 0. (13)
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If V⊤U = diag(α1, . . . ,αR) then zk =−mkαk , detached when |zk| > g. The rank-one mean (u = v =
1/
p

N , m = b) gives zbal =−b.
Low-rank structure and overlaps are developed in §2.4.

2.4 Low-rank Perturbation and (Time-Resolved) Overlaps

We now connect low-rank structure in the connectivity to isolated eigenvalues (“outliers”) that detach
from the Ginibre bulk and show how these outliers predict macroscopic transitions in the driven
dynamics.

Setting. Recall our connectivity

J = gW − b
N

11⊤+S, S =
R∑

k=1
mkukv⊤k , (14)

with W i.i.d. real Ginibre with entries Wi j ∼ N(0,1/N), g > 0, and {uk,vk}R
k=1 deterministic unit

vectors. By [5], the empirical spectrum of gW converges to the uniformmeasure on the disk {z : |z| ≤ g},
and outside the disk the resolvent is well-behaved.

Determinantal reduction. We start with a standard identity for matrix determinants.

Lemma 2.1 (Matrix Determinants). Let A ∈CN×N be invertible and U ,V ∈CN×R . Then

det
(
A+UV T

)
= det(A)det

(
I + A−1UV T

)
. (15)

Applying Lemma 2.1 to A = zI − gW and UV T =−S, we obtain the following.

Lemma 2.2 (Characteristic Reduction for gW +S). For any z with zI − gW invertible,

det(zI − (gW +S))= det(zI − gW)det(IR −MRW (z)) , (16)

where S =UMV T , M = diag(m1, . . . ,mR), and RW (z) :=V T (zI − gW)−1U .

Hence, any eigenvalue z of gW +S with det(zI − gW) ̸= 0 satisfies

det(IR −MRW (z))= 0. (17)

Equation 17 shows that outliers are roots of a finite-dimensional determinant built from the base
resolvent (zI − gW)−1 projected onto the structured subspaces span {U} and span {V } [2].

Isotropic resolvent. Let |z| > g. The isotropic circular law [11] implies that for any U ,V with
R =O(1),

RW (z)=V T (zI − gW)−1U N→∞−−−−→
a.s.

−z−1V TU , (18)

i.e. quadratic forms of the resolvent convergence to those of −z−1I outside the bulk. Substituting 18
into 17 yields

det
(
IR + M

z
V TU

)
= 0 ⇐⇒ det

(
zIR +MV TU

)
= 0. (19)
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Theorem 2.3 (Finite-Rank Outliers). Let S =UMV T be rank R with R =O(1) as N →∞. Any limit
point z of an eigenvalue of gW +S with |z| > g satisfies

det
(
zIR +MV TU

)
= 0. (20)

Proof sketch. By Lemma 2.2, any eigenvalue z with det(zI − gW) ̸= 0 satisfies 17. For |z| > g, we are
outside the bulk and the isotropic limit 18 applies, yielding 20. Full details are in the Appendix. □

In particular, if V TU = diag(α1, . . . ,αR), then 20 reduces to

zk =−mkαk, k = 1, . . . ,R,

and each zk appears as an isolated eigenvalue if |zk| > g. Otherwise, the root is absorbed by the Ginibre
bulk.

Corollary 2.4 (Balance Outliers). Taking u = v = 1/
p

N and m = b for the mean term gives vT u = 1
and thus

zbal =−b,

consistent with Fig. 2(b) and our spectral baseline.

Combining balance and structure. For the full matrix J = gW− b
N 11T +S, we stack the rank-one

mean and rank-R spike in U , V . Outside |z| > g, the candidate outliers are the eigenvalues of the
(R+1)× (R+1) matrix −M̃C̃, where

M̃ = diag(b,m1, . . . ,mR) , C̃ =
((

1/
p

N
)T (

1/
p

N
) (

1/
p

N
)T

U
V T (

1/
p

N
)

V TU

)
.

When 1 is orthogonal to {U ,V } and V TU is diagonal, this decouples to the union of−b and−mkαk for
k = 1, . . . ,R. This provides us with a closed-form predictor for all isolated eigenvalues in our deformed
connectivity.

In Appendix B we sketch a formal low-rank NS-DMFT with overlap variables κ(t), following
Rosenbaum and colleagues. This yields a reduced Jacobian Jred(t) whose eigenvalues define a time-
resolved crossing criterion. In this report, however, we do not solve those equations numerically; all
low-rank predictions are based on a simpler trajectory-averaged Jacobian proxy described in Section 2.6.

2.5 Linearization and Effective Jacobian

We introduce three clearly separated linear objects:
Connectivity matrix J: The full connectivity matrix (bulk + mean + low-rank). When we show

spectra of J, we are studying Ginibre bulk + outliers (balanced, low-rank).
Instantaneous Jacobian A(t): Linearizing the dynamics around the driven trajectory gives

A(t)=−I + JD(t), D(t)= diag(φ′(hi(t))), (21)

where D(t) is the gain mask encoding which neurons are active at time t.
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Trajectory-averaged Jacobian Aavg: Averaging over the driven trajectory:

Aavg =−I + JD̄, D̄ = Et[D(t)] or a trajectory/time average. (22)

When we show spectra of Aavg, we are studying an effective linearization around driven trajectories.
The outlier of J is modified by the gain factor in Aavg (e.g., the real part is scaled by a factor related to
D̄).

2.6 Trajectory-averaged Jacobian proxy

Stability in a driven system. Stability of the driven system is, in principle, governed by Lyapunov or
Floquet exponents of the time-ordered product of the linearized dynamics. Instantaneous eigenvalues
of A(t) or Aavg provide hints but are not rigorous. Throughout we use the scalar proxy λ̂out(m) as a
practical approximation for the stability boundary, while treating the largest Lyapunov exponent λ1 as
the gold-standard diagnostic for long-time stability.

Proxy definition. Given the instantaneous Jacobian A(t)=−I+JD(t)where D(t)= diag(φ′(hi(t)))
is the gain mask (Eq. 21), we define the trajectory-averaged Jacobian as

Aavg =−I + JD̄, D̄ = Et[D(t)] or a trajectory/time average. (23)

For a rank-1 low-rank structure S = muv⊤ with u,v unit norm and orthogonal to 1, the outlier of
Aavg is approximated by the scalar proxy

λ̂out(m)= mαbar −1, αbar = v⊤(D̄u), (24)

where D̄ is the time-averaged gain mask. This proxy is an empirical, DMFT-inspired approximation to
the real part of the low-rank outlier of Aavg, not a rigorous stability criterion. The “gold standard” for
driven stability is the largest Lyapunov exponent λ1 of the time-ordered Jacobian product.

Proxy assumptions. This proxy is intended as a practical, DMFT-inspired heuristic rather than a
rigorous stability criterion. It assumes:

• a separation of timescales between the slowly varyingOUdrive and the fast recurrent fluctuations;

• that the ReLU gain mask D(t) averages to a quasi-stationary D̄;

• moderate values of g and strong balance b so that the spectrum is not extremely non-normal.

We therefore expect better agreement with λ1 away from very large g, extremely rapid drive, or strongly
non-stationary regimes.

2.7 Implementation details for the low-rank m-sweep (Fig. 3)

We simulate τ ḣ = −h+ Jφ(h)+ IOU(t) with ReLU, OU drive (τS = 1, σS = 0.5), and J = gW −
b
N 11⊤+m uv⊤ where u,v are unit norm and orthogonal to 1 with v⊤u = 1. After burn-in, we store the
derivative mask D(t)=φ′(h(t)) and estimate D̄ = Et[D(t)] via time average. The trajectory-averaged
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Jacobian is Aavg = −I + J diag(D̄); its outlier is the eigenvalue with largest real part. The proxy is
λ̂out(m)= m (v⊤D̄ u)−1, which approximates the reduced rank-1 eigenvalue in the linearized low-rank
DMFT. The largest Lyapunov exponent uses a Benettin scheme with periodic re-normalization; we
report the per-unit-time growth rate. All error bars are SEM across seeds.

Additional exploratory phase-slice experiments in (g,m) are described in Appendix D.

2.8 Numerical Details

Unless otherwise noted, we follow Engelken et al.: J0 = 1; I(t) an OU process with correlation time
τS = τ; σ the variance of independent noise; g ∈ {0,2} for noise-only vs. chaotic regimes. For spectra
we use N up to a few thousand and reuse the same W while varying b to isolate the effect. For DMFT
we integrate Eqs. 10 on a triangular time grid with adaptive Gauss-Kronrod quadrature for q(t, t′) (in
the ReLU case) and compare to matched network simulations (Euler-Maruyama, ∆t as in the original
paper).

For the balanced reproductions (Figs. 1 and 2), we use the parameters specified in the figure captions.
For the low-rank m-sweep (Fig. 3), we use fixed (g,b) and sweep m as described in Section 2.7.

3 Results

3.1 Result 1: Balanced RNN reproductions and spectral fingerprints

We reproduce the non-stationary DMFT predictions for OU-driven balanced RNNs [6], validating our
implementation and providing a baseline for the low-rank extensions. Our reproductions confirm
the spectral fingerprints (Ginibre bulk with balanced outlier at −b), DMFT-simulation agreement
for mean and variance dynamics, and the transition of the largest Lyapunov exponent with the gain
parameter g. Figures 1 and 2 together present the four reproduction panels (a)–(d) that benchmark our
implementation against prior work.
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(a) Raw trajectories hi(t) and population mean m(t) in the low-g and high-g regimes.

(b) Non-stationary DMFT reproduction: mean m(t) and variance c(t, t) under OU drive, com-
paring DMFT predictions and network simulations.

Figure 1: Balanced RNN reproductions. (a) Raw trajectories hi(t) and population mean m(t) in the
low-g and high-g regimes. Parameters: N = 1000, g ∈ {0.8,1.6}, b = 10, τ = 1, τS = 1, σOU = 0.5.
(b) Non-stationary DMFT reproduction: mean m(t) and variance c(t, t) under OU drive, comparing
DMFT predictions and network simulations. Parameters: g = 1.6, b = 10, J0 = 1.0, Nsim = 250. All
panels use connectivity J = gW − b

N 11⊤ and OU input statistics as in Engelken et al.
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(a) Spectral fingerprints of balanced connectiv-
ity: Ginibre bulk of radius g and a real outlier
at −b.

(b) Largest Lyapunov exponent λ1 as a function
of g, showing the approach toward the transi-
tion in the driven balanced network.

Figure 2: Baseline reproductions for the OU-driven balanced random network (panels B and D).
(a) Spectral fingerprints of balanced connectivity: Ginibre bulk of radius g and a real outlier at −b.
Parameters: N = 2000, g = 2.0, b ∈ {1,3,10,30,100}. (b) Largest Lyapunov exponent λ1 as a function
of g, showing the approach toward the transition in the driven balanced network. Parameters: N =
1000, b = 10, g ∈ [0.6,1.8], nseeds = 5. All panels use connectivity J = gW − b

N 11⊤ and OU input
statistics as in Engelken et al.

Figure 1(a) shows raw trajectory phenomenology for low-g (g = 0.8) and high-g (g = 1.6) regimes
in a balanced RNN with OU input. In both regimes, individual neuron traces hi(t) and the population
mean m(t) exhibit irregular but bounded dynamics driven by the OU input, with larger fluctuations in
the high-g case.

Figure 1(b) demonstrates that our non-stationary DMFT solver reproduces simulation statistics
for the OU-driven network. The DMFT predictions for mean m(t) and variance c(t, t) are compared
against finite-N simulations (N = 250). The trajectories and variances track each other reasonably well,
validating our DMFT implementation.

Figure 2(a) validates the spectral fingerprints of balanced connectivity. The eigenvalue spectrum of
the connectivity matrix J = gW − b

N 11⊤ shows a circular-law bulk of radius g (Ginibre ensemble) and
a single real outlier near −b that detaches from the bulk. As b increases, the outlier moves further left
on the real axis, with O(N−1/2) finite-size fluctuations around the theoretical location −b [9].

Figure 2(d) shows the largest Lyapunov exponent λ1 vs gain g for the balanced OU-driven RNN
(samemodel as panel A: J = gW− b

N 11⊤ with OU input scaled by b). Parameters are N = 1000, b = 10,
τS = 1.0, σOU = 0.5, with g swept from 0.6 to 1.8 (13 points) and nseeds = 5 seeds. The Lyapunov
exponent estimation uses a Benettin scheme (see Methods) with periodic renormalization, and error
bars show SEM over seeds. Important: Throughout this range, λ1(g) < 0. It increases toward 0
with increasing g but never crosses; we are below the asymptotic transition. This is consistent with
being in a stable regime in our finite-N , finite-time setting, and with potential finite-size/finite-time
underestimation of the true transition point.
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3.2 Result 2: Low-rank outlier proxy vs λ1 in driven networks

The trajectory-averaged Jacobian proxy λ̂out(m)= m(v⊤D̄u)−1 qualitatively tracks the largest Lya-
punov exponent λ1 as the low-rank amplitude m varies, providing a practical DMFT-inspired indicator
of approaching stability boundaries. Both quantities remain negative in the explored parameter range,
but show similar trends toward zero.

Figure 3: Low-rank outlier proxy vs Lyapunov exponent comparison. (a) Spectrum of the trajectory-
averaged Jacobian Aavg showing a bulk and a low-rank outlier as the rank-1 strength m varies. (b)
Comparison between the scalar proxy λ̂out(m) = m(v⊤D̄u)− 1 and the empirical real part of the
outlier ℜλout(Aavg) estimated from simulations. (c) Largest Lyapunov exponent λ1(m) estimated by
the Benettin method on the driven network. All panels use the same parameters (g,b,τS,σOU) and
low-rank vectors u,v (random, unit norm, orthogonal to 1).

Figure 3 tests the low-rank prediction at fixed (g,b) by sweeping the rank-1 strength m. For each
m we (i) time-average the Jacobian to obtain Aavg and extract the outlier with maximal real part, (ii)
record the largest Lyapunov exponent λ1 from the network dynamics, and (iii) evaluate the scalar
proxy λ̂out(m)= m(v⊤D̄u)−1 from the same run. The low-rank vectors u,v are chosen as random
unit-norm vectors orthogonal to 1, with v⊤u = 1. The empirical ℜλout(m) and the proxy track each
other qualitatively but do not exactly coincide, and both remain negative over the range explored (no
actual crossing). The λ1(m) curve also trends toward zero but stays negative, consistent with being
in a stable regime. This alignment is the central sanity check for our low-rank proxy: the outlier
qualitatively tracks the macroscopic stability boundary.

The largest Lyapunov exponent λ1 is the gold-standard stability metric in the driven system, mea-
suring the long-time exponential growth rate of infinitesimal perturbations. In contrast,ℜ(λmax(Aavg))
and the scalar proxy λ̂out(m)= m(v⊤D̄u)−1 are approximations inspired byDMFT that use a trajectory-
averaged linearization. Our experiments show that these quantities track each other qualitatively: the
proxy and λ1 show similar trends as m varies, and both remain negative over the explored parameter
range. However, they may diverge due to finite-size effects, fast drive, strong non-normality, or strongly
transient regimes. The proxy crossing is a practical operational marker for stability transitions, not a
rigorous theorem. Instantaneous eigenvalues of A(t) indicate local expansion, but long-time stability is
governed by λ1. More aggressive parameter sweeps and longer horizons are needed to see an actual
crossing.
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We also checked robustness to u,v orientation and tanh vs ReLU; the proxy’s qualitative behavior
was unchanged (see Appendix C).

We also performed preliminary (g,m) phase-slice experiments: the proxy outlier crosses zero
for large m and g, but sparse λ1 checks remain negative. This suggests the proxy is a conservative
early-warning signal rather than a sharp boundary; details are given in Appendix D.

4 Discussion

4.1 Summary of contributions

The present work makes two main contributions: (i) reproducing balanced RNN spectral fingerprints
and dynamics (Ginibre bulk with balanced outlier at −b), validating our non-stationary DMFT imple-
mentation against prior work; and (ii) introducing and testing a low-rank trajectory-averaged Jacobian
outlier proxy against λ1 in a driven network, showing qualitative agreement but highlighting the
limitations of trajectory-averaged spectral proxies in non-autonomous settings.

The reproduction results in Sec. 3.1 validate our non-stationary DMFT implementation and confirm
the spectral fingerprints and dynamical predictions for OU-driven balanced RNNs. The spectral
fingerprints (Ginibre bulk with balanced outlier at−b) andNS-DMFT reproduction (mean and variance
dynamics) are solid and validated. The largest Lyapunov exponent λ1(g) increases with g but remains
negative throughout the scanned range, consistent with being below the asymptotic transition in our
finite-N , finite-time setting.

The low-rank proxy results in Sec. 3.2 show that the trajectory-averaged Jacobian outlier proxy
qualitatively tracks λ1 as m varies, with both remaining negative over the explored parameter range.
The proxy and empirical outlier of Aavg track each other, and both trend toward zero as m increases,
providing a central sanity check for the low-rank proxy approach.

4.2 Interpretation of proxy vs λ1

The largest Lyapunov exponent λ1 is the gold-standard stability metric, measuring the long-time
exponential growth rate of infinitesimal perturbations. In contrast, the trajectory-averaged Jacobian
proxy is a heuristic DMFT-inspired approximation. The qualitative alignment between the proxy and
λ1 in Fig. 3 suggests that the low-rank mode controls the macroscopic stability boundary, but the proxy
can cross zero while λ1 remains negative due to non-autonomous drive, non-normality, and finite-time
effects. The proxy should be viewed as a conservative early-warning signal rather than a definitive
phase boundary.

In exploratory phase-slice experiments (see Appendix D), the proxy outlier becomes positive for
large m and g, while sparse λ1 validation shows all sampled points remain stable. This gap highlights
both the promise and limitations of DMFT-inspired spectral proxies in non-autonomous settings.

4.3 Future work

Several directions remain for future investigation: (i) full numerical solution of the low-rank NS-DMFT
equations with time-dependent overlaps κ(t) (conceptual framework described in Appendix B); (ii)
more systematic (g,m) phase diagram exploration with larger N and longer simulation horizons;
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(iii) rigorous bounds on proxy accuracy and conditions under which it reliably predicts λ1; and (iv)
extensions to rank-R > 1, quasi-periodic dynamics, and other nonlinearities beyond ReLU and tanh.

5 Limitations

Our work has several global limitations:

• Finite-N, finite-T bias: All experiments use finite network sizes (N = 1000–2000) and finite
simulation horizons. Lyapunov exponent estimates are subject to finite-time bias, and finite-N
effects enter at order N−1/2 in both spectra and λ1 estimates. We do not observe actual crossings
(λ1 = 0) in the explored parameter range, only trends toward zero.

• Proxy is heuristic: The trajectory-averaged Jacobian proxy is a DMFT-inspired approximation,
not a rigorous stability criterion. It assumes separation of timescales, quasi-stationary gain masks,
andmoderate non-normality. These assumptions may fail in regimes with very large g, extremely
rapid drive, or strongly non-stationary trajectories, leading to deviations between the proxy
and λ1. Non-autonomous drive and non-normal structure limit the reliability of instantaneous
eigenvalue-based proxies.

• Low-rank NS-DMFT with κ(t) is conceptual only: The formal low-rank NS-DMFT frame-
work with overlap variables κ(t) (described in Appendix B) is not solved numerically in this work.
All concrete predictions come from the simpler trajectory-averaged Jacobian proxy and finite-N
simulations.

• Limited parameter coverage: The core result (Fig. 3) uses a single (g,b) pair with m swept.
Phase-slice experiments (Appendix D) probe only a coarse (g,m) grid. Rank-1 and ReLU are
special cases; other nonlinearities and higher-rank structure are not fully explored.
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A Proofs

Proof of Lemma 2.1. The result follows from the multiplicative property of determinants and the fac-
torization

A+UV T = A
(
I + A−1UV T

)
.

Taking determinants on both sides and using det(AB)= det(A)det(B) yields

det
(
A+UV T

)
= det(A)det

(
I + A−1UV T

)
,

as required. □

Proof of Lemma 2.2. Apply Lemma 2.1 with A = zI − gW and UV T =−S =−UMV T to obtain

det(zI − (gW +S))= det(zI − gW)det
(
I − (zI − gW)−1UMV T

)
.

Using the identity det(IN −AB)= det(IR−BA) for A ∈CN×R and B ∈CR×N (Sylvester’s determinant
theorem), we have

det
(
I − (zI − gW)−1UMV T

)
= det

(
IR −MV T (zI − gW)−1U

)
= det(IR −MRW (z)) ,

where RW (z)=V T (zI − gW)−1U , as required. □

Proof of Equation 18. For |z| > g, the resolvent (zI − gW)−1 is well-defined almost surely. By the
isotropic circular law [11], for any fixed vectors u,v ∈CN with bounded norms, the quadratic form
vT (zI−gW)−1u converges almost surely as N →∞ to the corresponding quadratic form of the limiting
resolvent.

Outside the bulk (|z| > g), the empirical spectral distribution of gW converges to the uniform
measure on the disk of radius g. The Stieltjes transform of this limiting distribution is m(z)=−z−1 for
|z| > g. This implies that the resolvent (zI− gW)−1 converges almost surely to −z−1I in the sense that
for any fixed vectors u,v,

vT (zI − gW)−1u N→∞−−−−→
a.s.

−z−1vT u.

Since U ,V ∈CN×R with R =O(1) fixed, and each column has bounded norm, the matrix RW (z)=
V T (zI − gW)−1U converges entry-wise almost surely:

RW (z)=V T (zI − gW)−1U N→∞−−−−→
a.s.

−z−1V TU ,

as required. □

Proof of Theorem 2.3. By Lemma 2.2, any eigenvalue z of gW +S with det(zI − gW) ̸= 0 satisfies

det(IR −MRW (z))= 0,

where RW (z)=V T (zI − gW)−1U .
For |z| > g, we are outside the bulk and det(zI − gW) ̸= 0 almost surely. By Equation 18, we have

RW (z) N→∞−−−−→
a.s.

−z−1V TU .
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Taking the limit as N →∞, any limit point z of an eigenvalue with |z| > g must satisfy

det
(
IR + M

z
V TU

)
= 0.

Multiplying by zR (since z ̸= 0 for |z| > g > 0), we obtain

det
(
zIR +MV TU

)
= 0,

as required. □

Lemma A.1 (Gaussian ReLU moments). Let (X ,Y ) be jointly Gaussian with means µx,µy, variances
σ2

x,σ2
y and correlation ρ. Then

E[ReLU(X )]=σxφ(αx)+µxΦ(αx),

where αx =µx/σx, φ is the standard Gaussian density, and Φ is the standard Gaussian CDF. For the second
moment,

E[ReLU(X )ReLU(Y )]=σxσyψ(αx,αy,ρ)+µxµyΦ2(αx,αy,ρ)

+µxσyφ(αy)Φ

(
αx −ραy√

1−ρ2

)

+µyσxφ(αx)Φ

(
αy −ραx√

1−ρ2

)
,

where Φ2 is the bivariate Gaussian CDF and ψ is a function of the correlation structure. For the ReLU
nonlinearity, one of these integrals admits a closed form, enabling efficient 1D quadrature for the remaining
terms.

Proposition A.2 (Reduced Jacobian & crossing criterion). Along a NS-DMFT trajectory (m, c,κ), the lin-
earization of the overlap update κ 7→ CMχ(m, c,κ) is Jred(t)= CMA(t) with Aab(t)= E[uaubφ

′(m(t)+
u⊤Mκ(t)+ h̃(t))]. A macroscopic transition occurs when maxkℜλk(Jred(t)) crosses 0.

Proof of Proposition A.2. The overlap update map is κ(t)= CMχ(t) where

χ(t)= Eu,h̃
[
uφ

(
m(t)+u⊤Mκ(t)+ h̃(t)

)]
.

Linearizing around the trajectory (m(t), c(t, s),κ(t)) by taking the Fréchet derivative with respect to κ,
we obtain

δκ(t)= CM
∂χ

∂κ
δκ(t)= CMA(t)δκ(t),

where Aab(t)= Eu,h̃[uaubφ
′(m(t)+u⊤Mκ(t)+ h̃(t))] follows from differentiating under the expecta-

tion. The reduced Jacobian is thus Jred(t)= CMA(t). An instability occurs when the maximum real
part of the eigenvalues crosses zero, signaling a macroscopic transition in the dynamics. □
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B Conceptual Low-Rank NS-DMFT with Overlap Variables

This appendix describes a formal low-rank non-stationary DMFT framework with overlap variables
κ(t). This framework is not solved numerically in this report; all concrete low-rank predictions
come from the trajectory-averaged Jacobian proxy described in Section 2.6.

The non-stationaryDMFTequations below followRosenbaumandDoiron and subsequentwork [12],
extended here by formal overlap variablesκ(t) that encode low-rank structure. We couple the finite-rank
structure to the non-stationary DMFT (NS-DMFT) closure of Eq. 10, yielding a closed, time-resolved
description for the mean m(t), the two-time covariance c(t, s), and rank-R overlap variables κ(t) ∈RR .

With J = gW − b
N 11⊤+S and S =∑R

k=1 mkukv⊤k , the structured drive to neuron i is

µstruct
i (t) =

R∑
k=1

mk uk,iκk(t), κk(t) = 1p
N

v⊤kφ
(
h(t)

)
.

Under exchangeability and the Gaussian reduction for h̃(t), the R overlaps obey the self-consistency

κ(t) = CMχ(t), χ(t) = Eu,h̃
[
uφ

(
m(t)+u⊤Mκ(t)+ h̃(t)

)]
, (25)

where C= 1
N V⊤U ∈ RR×R , M=diag(m1, . . . ,mR), and h̃(t)∼N(0, c(t, t)). For φ(x) = ReLU(x) one

Gaussian integral is analytic and the second is 1D quadrature (Lemma A.1), as in the baseline NS-DMFT.
The mean and covariance equations retain the baseline form but their Gaussian moments use the

shifted mean:

τ
dm
dt

=−m(t)−bJ0ν(t)+bI(t), ν(t)= E[φ(
m(t)+u⊤Mκ(t)+ h̃(t)

)]
,

and Eqs. (10) are evaluated with the same shift inside the moment q(t, s). Numerically, we would solve
(10) on the triangular grid, and at each time node tn update κ(tn) via (25) with the current m(tn) and
c(tn, tn).

Linearizing the overlap map κ 7→ CMχ(κ) around the trajectory (m(t), c(t, s),κ(t)) gives

δκ(t) = Jred(t)δκ(t), Jred(t) = CMA(t), (26)

with
Aab(t) = Eu,h̃

[
uaubφ

′(m(t)+u⊤Mκ(t)+ h̃(t)
)]

. (27)

The R instantaneous “outliers” are the eigenvalues of Jred(t); NS-DMFT predicts a macroscopic
transition when

max
k

Reλk
(
Jred(t)

) = 0, (28)

which parallels the growth kernel used for the non-stationary largest Lyapunov exponent. When the
external drive is high-dimensional and misaligned with the low-rank subspace, prior theory predicts
suppression along structured directions (“low-rank suppression”), consistent with our observation that
the dangerous mode is captured by the largest real eigenvalue of Jred(t) rather than an alignment-only
proxy. [12]

If V⊤U is diagonal and u,v are orthogonal to 1/
p

N , then C = diag(α1, . . . ,αR) and Jred(t) is
diagonal in the low-rank basis, yielding λk(t) = mkαk Akk(t). When Akk(t)≈1 (high-gain ReLU in
the active regime), this recovers the static outlier locations zk≈−mkαk from §2.3 outside the bulk,
providing a consistent bridge between the spectral result and the time-resolved stability condition (28).
This motivates the trajectory-averaged proxy m(v⊤D̄u)−1 used in our experiments.
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C Robustness Checks

We test whether the low-rank boundary depends on the precise rank-1 orientation or the choice of
activation. Changing u,v orientation (from u = v = 1/

p
N to random u,v ⊥ 1) shifts the apparent

threshold slightly, and replacing ReLU with tanh shifts the curve in a way consistent with effective gain
changes. The imaginary parts remain small, indicating the dominant transition is a real-axis instability.

(a) Real part of the outlier Reλout(Aavg) vs. m for
ReLU vs. tanh.

(b) Imaginary part of the outlier Imλout(Aavg) vs. m
for ReLU vs. tanh.

Figure 4: Orientation and nonlinearity controls for the low-rank outlier. For the parameter range
explored, both nonlinearities keep the outlier’s real part negative, and the imaginary part remains small
but nonzero, indicating that the proxy operates far from a true linear instability.

D Exploratory Phase-Slice Experiments

This appendix describes exploratory (g,m) phase-slice experiments that complement the core low-rank
m-sweep result (Fig. 3).

Motivated by the reproduction of the OU-driven balanced DMFT, we probe how the low-rank
amplitude m reshapes the effective stability boundary of the driven network. We construct a trajectory-
averaged Jacobian proxy Aavg =−I+J diag(D̄) and track the real part of its low-rank outlier eigenvalue
λ̂out(g,m) across m for several bulk gains g at fixed balance b = 10 (Fig. 5a). As m increases from 0 to
5, ℜλ̂out(g,m) moves monotonically toward zero and becomes positive for large m and larger g, sug-
gesting a DMFT-inspired proxy transition from a driven fixed-point–like regime to an instability/chaos
regime.

To test this heuristic, we compute the largest Lyapunov exponent λ1 on a coarse grid of (g,m)
values (Fig. 5b), extending the search to larger gains (g ∈ {1.6,2.0,2.4}) and amplitudes (m ∈ [0,5]) than
in our initial experiments. Across all 15 sampled grid points, the Benettin estimator returns λ1 < 0,
indicating that the driven dynamics remain linearly stable on the simulated time horizon even where
the proxy outlier has crossed zero. This supports the interpretation of ℜλ̂out(g,m) as a useful but
conservative indicator of an approaching loss of stability, rather than a rigorous phase boundary.
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Figure 5: Proxy phase slices and sparse Lyapunov validation for the low-rank amplitude m. (a) Real part
of the trajectory-averaged outlier eigenvalue λ̂out(g,m) of the Jacobian proxy Aavg =−I + J diag(D̄)
as a function of low-rank amplitude m, for three bulk gains g ∈ {1.6,2.0,2.4} at fixed balance b = 10,
OU drive (τS = 1, σOU = 0.5), and N = 1000. Shaded regions show the standard error across seeds.
For large m and larger g, the proxy outlier crosses zero, suggesting a putative loss of stability. (b)
Sparse validation of the sign of the largest Lyapunov exponent λ1 using the Benettin method on a 3×5
grid of (g,m) values. Each marker reports the sign of λ1 for (g,m) averaged across seeds; all sampled
points remain linearly stable (λ1 < 0) even when the proxy in panel (a) becomes positive, indicating
that ℜλ̂out(g,m) is a conservative, DMFT-inspired heuristic rather than a sharp stability boundary in
this driven setting.

Computation details. For the phase-slice experiment, we use the same low-rank driven RNNmodel:
connectivity J = gW− b

N 11⊤+muv⊤ withWi j ∼N(0,1/N), where u,v are random unit-norm vectors
orthogonal to 1 with v⊤u = 1. We scan a parameter grid: g ∈ {1.6,2.0,2.4} and m ∈ [0,5] sampled at
21 equally spaced values, with fixed b = 10, τ= 1, τS = 1, σOU = 0.5, and N = 1000. For each (g,m)
pair, we simulate the non-autonomous RNN with OU drive using Euler-Maruyama with time step
∆t = 10−3, burn-in period Tburn = 50, and measurement window Tmeas = 150.

The proxy computation proceeds as follows: we collect the gain mask D(t)= diag(φ′(hi(t))) during
the measurement period and compute the time-averaged mask D̄ = Et[D(t)] via trajectory average. We
then form the trajectory-averaged Jacobian Aavg =−I+J diag(D̄) and compute its eigenvalues, tracking
the eigenvalue with the largest real part as the outlier. The scalar proxy is λ̂out(g,m)= m(v⊤D̄u)−1,
which approximates ℜλout(Aavg).

For Lyapunov validation, we apply the Benettin method (as described in the reproduction section)
at a sparse subset of (g,m) grid points: specifically, we validate at all three g values and five m values
(m ∈ {0.0,0.5,1.0,1.5,2.0}), yielding a 3×5 = 15 point validation grid. At each validation point, we
compute λ1 using the same simulation protocol and report only the sign of λ1 (stable if λ1 < 0, unstable
if λ1 > 0). All results are averaged over nseeds = 3 seeds, with error bars showing standard error of the
mean for the proxy curves.
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