

TOWARDS A NON-STATIONARY DYNAMIC MEAN FIELD THEORY FOR LOW-RANK RECURRENT NEURAL NETWORKS

ANIKET DESHPANDE

Abstract

We study how low-rank structure in recurrent neural network connectivity shapes spectral outliers and stability transitions in driven, nonlinear dynamics. We first reproduce spectral and dynamical predictions of balanced OU-driven RNNs from [6], validating raw trajectory phenomenology, spectral fingerprints (Ginibre bulk with balanced outlier at $-b$), DMFT-simulation agreement for mean and variance dynamics, and the largest Lyapunov exponent behavior. We then present new empirical tests of a low-rank trajectory-averaged Jacobian outlier proxy and its relationship to the largest Lyapunov exponent λ_1 . Our core contribution is testing whether this proxy qualitatively predicts stability boundaries in driven networks. We introduce a formal non-stationary low-rank DMFT with overlap variables $\kappa(t)$ as a conceptual framework only; all numerical results in this report are based on a trajectory-averaged Jacobian proxy rather than a full low-rank NS-DMFT solver. We validate the proxy against direct eigenvalue and Lyapunov exponent measurements, showing it qualitatively tracks stability trends but remains a heuristic rather than a rigorous stability criterion.

Contents

1	Introduction	2	3	Results	9
1.1	Reproduction of Non-Stationary DMFT	2	3.1	Result 1: Balanced RNN reproductions and spectral fingerprints	9
1.2	Extension Towards Low-Rank Structure	3	3.2	Result 2: Low-rank outlier proxy vs λ_1 in driven networks	12
2	Methods	4	4	Discussion	13
2.1	Network & Balance Scaling	4	4.1	Summary of contributions	13
2.2	Non-Stationary DMFT Closure	5	4.2	Interpretation of proxy vs λ_1	13
2.3	Finite-rank Outliers	5	4.3	Future work	13
2.4	Low-rank Perturbation and (Time-Resolved) Overlaps	6	5	Limitations	14
2.5	Linearization and Effective Jacobian	7	A	Proofs	16
2.6	Trajectory-averaged Jacobian proxy	8	B	Conceptual Low-Rank NS-DMFT with Overlap Variables	18
2.7	Implementation details for the low-rank m-sweep (Fig. 3)	8	C	Robustness Checks	19
2.8	Numerical Details	9	D	Exploratory Phase-Slice Experiments	19

Date: January 7, 2026.

1 Introduction

How fast and reliably a recurrent neural population tracks a time-varying input depends on intrinsic timescales, recurrent variability (including chaos), and external noise. We study a continuous-time recurrent rate network (RNN) where synaptic currents $h_i(t)$ evolve according to

$$\tau \frac{dh_i}{dt} = -h_i(t) + \sum_{j=1}^N J_{ij} \phi(h_j(t)) + I_i(t) + \eta_i(t), \quad (1)$$

with timescale τ , connectivity matrix J , nonlinearity ϕ , external input $I_i(t)$, and independent noise $\eta_i(t)$. Here ϕ is a ReLU nonlinearity and $I_i(t)$ is an Ornstein-Uhlenbeck (OU) input. The gain parameter g controls the variance of random connectivity and sets the spectral radius $\approx g$ of the bulk eigenvalues (Ginibre circular law). The balance parameter b controls a rank-one mean connectivity term $-\frac{b}{N} \mathbf{1} \mathbf{1}^\top$ that generates a real outlier eigenvalue at $-b$, distinct from the bulk spectrum. The classic dynamic mean-field analysis predicts a transition to chaos in random RNNs as g increases [10]. A time-resolved mean-field account for rate networks (and a clean link to information rates) was missing until recently. [6] developed a non-stationary dynamic mean-field theory (NS-DMFT) that explains how *tight balance* improves encoding and predicts a near-linear growth of mutual information rate with balance parameter b for Ornstein-Uhlenbeck (OU) inputs, in both noisy and chaotic regimes.

DMFT provides key advantages over direct numerical simulation: it yields analytical or semi-analytical predictions that reveal scaling laws, captures the large- N limit exactly, and provides interpretable order parameters (covariances, overlaps) that connect microscopic connectivity to macroscopic observables. This theoretical framework is essential for understanding *why* certain connectivity patterns produce specific dynamical behaviors, rather than merely observing them in simulations.

This project pursues two complementary goals. First, we **reproduce** core results on OU-driven balanced random networks and non-stationary DMFT from Engelken et al. and related work, including trajectory statistics, spectral fingerprints of balanced connectivity (Ginibre bulk with balanced outlier at $-b$), DMFT-simulation agreement for mean and variance dynamics, and the transition of the largest Lyapunov exponent with the gain parameter g . Second, we **introduce and test** a low-rank trajectory-averaged Jacobian outlier proxy and compare it to the largest Lyapunov exponent λ_1 as our main new contribution.

Our core research question is: **Can a low-rank outlier proxy, computed from a trajectory-averaged Jacobian, qualitatively predict stability of a driven balanced RNN, and how does it compare to the largest Lyapunov exponent?** We explore DMFT-inspired spectral proxies and compare them against Lyapunov exponents in finite- N , finite-time simulations. We introduce a formal non-stationary low-rank DMFT with overlap variables $\kappa(t)$ as a conceptual framework. All low-rank numerical results are based on a trajectory-averaged Jacobian proxy rather than a full low-rank NS-DMFT solver.

1.1 Reproduction of Non-Stationary DMFT

Our first objective is to *reproduce* the non-stationary DMFT results of Engelken and collaborators for balanced rate networks driven by time-varying inputs [6]. In this model, currents $h_i(t)$ evolve according to Eq. (1) with ReLU nonlinearity $\phi(x) = \max(0, x)$ and common OU input $I(t)$ scaled by b .

For panels A, B, and D, connectivity has a rank-one mean ("tight balance") plus i.i.d heterogeneity:

$$J_{ij} = gW_{ij} - \frac{b}{N}\mathbf{1}\mathbf{1}^\top, \quad W_{ij} \sim \mathcal{N}\left(0, \frac{1}{\sqrt{N}}\right), \quad (2)$$

where W is scaled so the bulk has radius g (circular law). For panel C (DMFT reproduction), the connectivity matches the DMFT solver exactly: $J_{ij} = \frac{J_0}{N} + gW_{ij}$ where $J_0 = 1.0$ and $W_{ij} \sim \mathcal{N}(0, 1/\sqrt{N})$, with the same OU statistics and ReLU nonlinearity used in both the DMFT solver and comparison simulations. Decomposing $h_i = m + \tilde{h}_i$ with $m(t) = \frac{1}{N} \sum_i h_i(t)$ leads to coupled mean-fluctuation equations and the *balance* equation for the population rate $v(t) = \frac{1}{N} \sum_i \phi(m + \tilde{h}_i(t))$. In the tight-balance limit, $v(t) \approx I(t)/J_0$ and the mean mode acquires an effective timescale $\tau_{\text{eff}} = \tau/b$, showing that balance accelerates mean dynamics b -fold. Non-stationary DMFT closes on a pair of *time-resolved* order parameters: the two-time covariance of fluctuations $c(t, t') = \frac{1}{N} \sum_i \langle \tilde{h}_i(t) \tilde{h}_i(t') \rangle$ and an auxiliary kernel encoding response; this yields predictions for the response spectrum, the largest Lyapunov exponent, and frequency-resolved information transmission. We reproduce the spectral fingerprint of the connectivity: a Ginibre-like bulk of radius $\approx g$ and a single real outlier at $\lambda_{\text{out}} = -b$ generated by the rank-one mean term (see Sec. 3.1).

1.2 Extension Towards Low-Rank Structure

Building on the balanced baseline, our second aim is to introduce *low-rank structure* atop the random bulk and study how spectral outliers born from the structure forecast macroscopic transitions in driven networks. A connectivity matrix has *low-rank structure* when it can be decomposed as $J = gW + S$ where S has rank $R \ll N$ (i.e., $S = \sum_{k=1}^R m_k u_k v_k^\top$ for R pairs of vectors $\{u_k, v_k\}$). This means the structured component S spans only a low-dimensional subspace, in contrast to the full-rank random bulk gW . Low-rank structure is ubiquitous in neuroscience (e.g., task-specific projections, feedforward pathways, or learned connectivity patterns) and can dramatically alter network dynamics by introducing isolated eigenvalues ("outliers") that detach from the bulk spectrum. We consider a rank-1 perturbation $S = muv^\top$ added to J , analyze the resulting outlier eigenvalue, and test whether a trajectory-averaged Jacobian proxy can predict stability transitions under drive.

Recent work shows that, under high-dimensional inputs or perturbations, recurrent networks with low-rank structure often exhibit *low-rank suppression*: variability aligned with the structured modes is actively damped and the resulting dynamics remain high-dimensional despite low-rank connectivity [12]. This clarifies when "low-rank structure \Rightarrow low-dimensional dynamics" fails, and motivates a time-resolved treatment under drive. Our goal is complementary: we test a trajectory-averaged Jacobian outlier proxy for when a finite-rank *outlier* approaches zero and compare it to the largest Lyapunov exponent. We estimate the low-rank outlier via a trajectory-averaged gain proxy, yielding a practical heuristic that can be validated against direct Lyapunov measurements.¹

¹See, e.g., [8] for low-rank RNN theory and classical outlier results in spiked random matrices [1, 4].

2 Methods

2.1 Network & Balance Scaling

We study a continuous-time rate network with N units. Each unit has synaptic current $h_i(t)$ and rate $\phi(h_i(t)) = \max(0, h_i(t))$ (ReLU). The dynamics are governed by

$$\tau \frac{dh_i}{dt} = -h_i(t) + \sum_{j=1}^N J_{ij} \phi(h_j(t)) + bI(t) + \eta_i(t). \quad (3)$$

The connectivity matrix J has entries J_{ij} that depend on the experimental context.

(a) Balanced RNN for panels A, B, D:

$$J = gW - \frac{b}{N} \mathbf{1}\mathbf{1}^\top, \quad W_{ij} \sim \mathcal{N}\left(0, \frac{1}{N}\right), \quad (4)$$

where $W \in \mathbb{R}^{N \times N}$ is a real Ginibre matrix with entries $W_{ij} \sim \mathcal{N}(0, 1/N)$, so its spectrum follows a circular law of radius g [9]. The mean term $-\frac{b}{N} \mathbf{1}\mathbf{1}^\top$ contributes a single real eigenvalue at $-b$. The OU drive $I_{\text{OU}}(t)$ has correlation time τ_S and variance parameter σ_{OU} , scaled by b in the dynamics. We use ReLU nonlinearity $\phi(x) = \max(0, x)$.

(b) OU-driven DMFT model for panel C:

$$J = \frac{J_0}{N} \mathbf{1}\mathbf{1}^\top + gW, \quad W_{ij} \sim \mathcal{N}\left(0, \frac{1}{N}\right), \quad (5)$$

where $J_0 = 1.0$ and W is the same real Ginibre matrix. This matches the nonstationary DMFT equations of [6], and we use their solver (`solve_ns_dmft_ou`) as implemented. The same OU statistics ($\tau_S, \sigma_{\text{OU}}$) and ReLU nonlinearity are used in both the DMFT solver and the comparison simulations. η_i are independent Gaussian white-noise inputs with $\langle \eta_i(t) \eta_i(t') \rangle = \sigma^2 \tau \delta(t - t')$, and $I(t)$ is a common input (OU process with correlation time τ_S). We define the population mean and fluctuations as

$$h_i(t) = m(t) + \tilde{h}_i(t), \quad m(t) = \frac{1}{N} \sum_{i=1}^N h_i(t), \quad \langle \tilde{h}_i(t) \rangle = 0. \quad (6)$$

Averaging 3 and using the mean connectivity yields the mean dynamics

$$\tau \frac{dm}{dt} = -m(t) - bJ_0 v(t) + bI(t), \quad v(t) = \frac{1}{N} \sum_{i=1}^N \phi(m(t) + \tilde{h}_i(t)). \quad (7)$$

Solving for $v(t)$ gives the *balance equation*

$$v(t) = \frac{1}{J_0} I(t) - \frac{1}{bJ_0} \left(\tau \frac{dm}{dt} + m(t) \right). \quad (8)$$

In the tight-balance limit $b \rightarrow \infty$, $v(t) \approx I(t)/J_0$ and the mean mode has effective timescale $\tau_{\text{eff}} = \tau/b$.

Spectral Expectation. For the balanced connectivity $J = gW - \frac{b}{N} \mathbf{1}\mathbf{1}^\top$ with $W_{ij} \sim \mathcal{N}(0, 1/N)$, the empirical spectrum converges to the uniform measure on the disk of radius g (circular law; 5, 11), and the rank-one mean contributes a single real outlier at $-b$ (see 9). This is the spectral baseline that Fig. 2(b) visualizes.

2.2 Non-Stationary DMFT Closure

Following [6], we recall the non-stationary DMFT equations for the mean $m(t)$ and covariance $c(t, s)$ under OU drive. The residual input $\tilde{h}(t)$ (dropping index i by exchangeability) is Gaussian in the large- N limit. Non-stationary DMFT closes the dynamics for the mean $m(t)$, the two-time autocorrelation $c(t, t') = \langle \tilde{h}(t)\tilde{h}(t') \rangle$, and an auxiliary response kernel $k(t, t')$ via

$$\tau \frac{d\tilde{h}}{dt} = -\tilde{h} + \eta(t) + \xi(t), \quad \langle \eta(t) \rangle = 0, \quad \langle \eta(t)\eta(t') \rangle = q(t, t'), \quad (9)$$

where $q(t, t') = g^2 \langle \phi(m(t) + \tilde{h}(t))\phi(m(t') + \tilde{h}(t')) \rangle$. Differentiating $c(t, t')$ and $k(t, t')$ yields the self-consistent system

$$\tau \partial_{t'} c(t, t') = -c(t, t') + k(t, t'), \quad \tau \partial_{t'} k(t, t') = -k(t, t') + q(t, t') + \tau \sigma^2 \delta(t - t'), \quad (10)$$

with mean update $\tau dm/dt = -m - b J_0 v + b I(t)$ and $v(t) = \langle \phi(m(t) + \tilde{h}(t)) \rangle$. For the ReLU nonlinearity $\phi(x) = \max(0, x)$, one of the Gaussian integrals in q admits a closed form (Lemma A.1), enabling efficient quadrature for the remaining integrals. We solve the NS-DMFT equations of [6] on a triangular grid using the implementation provided in the original work (or a matching reimplementation), with ReLU Gaussian moments evaluated as in Lemma A.1. For comparison simulations of the network we use Euler-Maruyama with step Δt matched to the DMFT grid.

Lyapunov exponent estimation (panel D). For panel D, we estimate the largest Lyapunov exponent λ_1 using a Benettin method [3] applied to the balanced OU-driven RNN (same model as panel A: $J = gW - \frac{b}{N} \mathbf{1}\mathbf{1}^\top + S$ with OU input scaled by b). We sweep g from 0.6 to 1.8 with fixed $b = 10$, $\tau_S = 1.0$, $\sigma_{\text{OU}} = 0.5$, using $N = 1000$ and averaging over $n_{\text{seeds}} = 5$ seeds. The method uses periodic renormalization of the perturbation vector and reports the per-unit-time growth rate.

2.3 Finite-rank Outliers

We study connectivity with low-rank structure:

$$J = gW - \frac{b}{N} \mathbf{1}\mathbf{1}^\top + S, \quad S = \sum_{k=1}^R m_k u_k v_k^\top, \quad (11)$$

where $W \in \mathbb{R}^{N \times N}$ has entries $W_{ij} \sim \mathcal{N}(0, 1/N)$, so its spectrum follows a circular law of radius g . Here $R = 1$ in this work. The vectors u_k, v_k are quenched with $\|u_k\|_2 = \|v_k\|_2 = 1$, and we assume $u_k, v_k \perp \mathbf{1}$ in the low-rank experiments and proofs. This low-rank structure is motivated by prior work on structured RNNs [8], low-rank DMFT [7], and spiked random matrix theory [2, 1]. Using Sylvester's determinant theorem and the matrix determinant lemma, the characteristic polynomial reduces to a finite $R \times R$ determinant, whose roots describe the detached outliers (2; circular-law resolvent control via 11, 5). For any z with $zI - gW$ invertible,

$$\det(zI - (gW + S)) = \det(zI - gW) \det(I_R - M \mathcal{R}_W(z)), \quad (12)$$

where $M = \text{diag}(m_1, \dots, m_R)$ and $\mathcal{R}_W(z) = V^\top (zI - gW)^{-1} U$ with $U = [u_1, \dots, u_R]$ and $V = [v_1, \dots, v_R]$. For $|z| > g$, isotropic resolvent limits yield $\mathcal{R}_W(z) \rightarrow -z^{-1} V^\top U$, and outliers satisfy

$$\det(zI_R + MV^\top U) = 0. \quad (13)$$

If $V^\top U = \text{diag}(\alpha_1, \dots, \alpha_R)$ then $z_k = -m_k \alpha_k$, detached when $|z_k| > g$. The rank-one mean ($u = v = \mathbf{1}/\sqrt{N}$, $m = b$) gives $z_{\text{bal}} = -b$.

Low-rank structure and overlaps are developed in §2.4.

2.4 Low-rank Perturbation and (Time-Resolved) Overlaps

We now connect low-rank structure in the connectivity to isolated eigenvalues (“outliers”) that detach from the Ginibre bulk and show how these outliers predict macroscopic transitions in the driven dynamics.

Setting. Recall our connectivity

$$J = gW - \frac{b}{N} \mathbf{1}\mathbf{1}^\top + S, \quad S = \sum_{k=1}^R m_k u_k v_k^\top, \quad (14)$$

with W i.i.d. real Ginibre with entries $W_{ij} \sim \mathcal{N}(0, 1/N)$, $g > 0$, and $\{u_k, v_k\}_{k=1}^R$ deterministic unit vectors. By [5], the empirical spectrum of gW converges to the uniform measure on the disk $\{z : |z| \leq g\}$, and outside the disk the resolvent is well-behaved.

Determinantal reduction. We start with a standard identity for matrix determinants.

Lemma 2.1 (Matrix Determinants). *Let $A \in \mathbb{C}^{N \times N}$ be invertible and $U, V \in \mathbb{C}^{N \times R}$. Then*

$$\det(A + UV^T) = \det(A) \det(I + A^{-1}UV^T). \quad (15)$$

Applying Lemma 2.1 to $A = zI - gW$ and $UV^T = -S$, we obtain the following.

Lemma 2.2 (Characteristic Reduction for $gW + S$). *For any z with $zI - gW$ invertible,*

$$\det(zI - (gW + S)) = \det(zI - gW) \det(I_R - M\mathcal{R}_W(z)), \quad (16)$$

where $S = UMV^T$, $M = \text{diag}(m_1, \dots, m_R)$, and $\mathcal{R}_W(z) := V^T(zI - gW)^{-1}U$.

Hence, any eigenvalue z of $gW + S$ with $\det(zI - gW) \neq 0$ satisfies

$$\det(I_R - M\mathcal{R}_W(z)) = 0. \quad (17)$$

Equation 17 shows that outliers are roots of a finite-dimensional determinant built from the base resolvent $(zI - gW)^{-1}$ projected onto the structured subspaces $\text{span}\{U\}$ and $\text{span}\{V\}$ [2].

Isotropic resolvent. Let $|z| > g$. The isotropic circular law [11] implies that for any U, V with $R = \mathcal{O}(1)$,

$$\mathcal{R}_W(z) = V^T(zI - gW)^{-1}U \xrightarrow[\text{a.s.}]{N \rightarrow \infty} -z^{-1}V^T U, \quad (18)$$

i.e. quadratic forms of the resolvent converge to those of $-z^{-1}I$ outside the bulk. Substituting 18 into 17 yields

$$\det\left(I_R + \frac{M}{z}V^T U\right) = 0 \iff \det\left(zI_R + MV^T U\right) = 0. \quad (19)$$

Theorem 2.3 (Finite-Rank Outliers). *Let $S = UMV^T$ be rank R with $R = \mathcal{O}(1)$ as $N \rightarrow \infty$. Any limit point z of an eigenvalue of $gW + S$ with $|z| > g$ satisfies*

$$\det(zI_R + MV^T U) = 0. \quad (20)$$

Proof sketch. By Lemma 2.2, any eigenvalue z with $\det(zI - gW) \neq 0$ satisfies 17. For $|z| > g$, we are outside the bulk and the isotropic limit 18 applies, yielding 20. Full details are in the Appendix. \square

In particular, if $V^T U = \text{diag}(\alpha_1, \dots, \alpha_R)$, then 20 reduces to

$$z_k = -m_k \alpha_k, \quad k = 1, \dots, R,$$

and each z_k appears as an *isolated* eigenvalue if $|z_k| > g$. Otherwise, the root is absorbed by the Ginibre bulk.

Corollary 2.4 (Balance Outliers). *Taking $u = v = \mathbf{1}/\sqrt{N}$ and $m = b$ for the mean term gives $v^T u = 1$ and thus*

$$z_{\text{bal}} = -b,$$

consistent with Fig. 2(b) and our spectral baseline.

Combining balance and structure. For the full matrix $J = gW - \frac{b}{N} \mathbf{1}\mathbf{1}^T + S$, we stack the rank-one mean and rank- R spike in U, V . Outside $|z| > g$, the candidate outliers are the eigenvalues of the $(R + 1) \times (R + 1)$ matrix $-\tilde{M}\tilde{C}$, where

$$\tilde{M} = \text{diag}(b, m_1, \dots, m_R), \quad \tilde{C} = \begin{pmatrix} (\mathbf{1}/\sqrt{N})^T (\mathbf{1}/\sqrt{N}) & (\mathbf{1}/\sqrt{N})^T U \\ V^T (\mathbf{1}/\sqrt{N}) & V^T U \end{pmatrix}.$$

When $\mathbf{1}$ is orthogonal to $\{U, V\}$ and $V^T U$ is diagonal, this decouples to the *union* of $-b$ and $-m_k \alpha_k$ for $k = 1, \dots, R$. This provides us with a closed-form predictor for all isolated eigenvalues in our deformed connectivity.

In Appendix B we sketch a formal low-rank NS-DMFT with overlap variables $\kappa(t)$, following Rosenbaum and colleagues. This yields a reduced Jacobian $J_{\text{red}}(t)$ whose eigenvalues define a time-resolved crossing criterion. In this report, however, we **do not** solve those equations numerically; all low-rank predictions are based on a simpler trajectory-averaged Jacobian proxy described in Section 2.6.

2.5 Linearization and Effective Jacobian

We introduce three clearly separated linear objects:

Connectivity matrix J : The full connectivity matrix (bulk + mean + low-rank). When we show spectra of J , we are studying Ginibre bulk + outliers (balanced, low-rank).

Instantaneous Jacobian $A(t)$: Linearizing the dynamics around the driven trajectory gives

$$A(t) = -I + JD(t), \quad D(t) = \text{diag}(\phi'(h_i(t))), \quad (21)$$

where $D(t)$ is the gain mask encoding which neurons are active at time t .

Trajectory-averaged Jacobian A_{avg} : Averaging over the driven trajectory:

$$A_{\text{avg}} = -I + J\bar{D}, \quad \bar{D} = \mathbb{E}_t[D(t)] \text{ or a trajectory/time average.} \quad (22)$$

When we show spectra of A_{avg} , we are studying an effective linearization around driven trajectories. The outlier of J is modified by the gain factor in A_{avg} (e.g., the real part is scaled by a factor related to \bar{D}).

2.6 Trajectory-averaged Jacobian proxy

Stability in a driven system. Stability of the driven system is, in principle, governed by Lyapunov or Floquet exponents of the time-ordered product of the linearized dynamics. Instantaneous eigenvalues of $A(t)$ or A_{avg} provide hints but are not rigorous. Throughout we use the scalar proxy $\hat{\lambda}_{\text{out}}(m)$ as a practical approximation for the stability boundary, while treating the largest Lyapunov exponent λ_1 as the gold-standard diagnostic for long-time stability.

Proxy definition. Given the instantaneous Jacobian $A(t) = -I + JD(t)$ where $D(t) = \text{diag}(\phi'(h_i(t)))$ is the gain mask (Eq. 21), we define the trajectory-averaged Jacobian as

$$A_{\text{avg}} = -I + J\bar{D}, \quad \bar{D} = \mathbb{E}_t[D(t)] \text{ or a trajectory/time average.} \quad (23)$$

For a rank-1 low-rank structure $S = muv^\top$ with u, v unit norm and orthogonal to $\mathbf{1}$, the outlier of A_{avg} is approximated by the scalar proxy

$$\hat{\lambda}_{\text{out}}(m) = m\alpha_{\text{bar}} - 1, \quad \alpha_{\text{bar}} = v^\top(\bar{D}u), \quad (24)$$

where \bar{D} is the time-averaged gain mask. This proxy is an empirical, DMFT-inspired approximation to the real part of the low-rank outlier of A_{avg} , *not* a rigorous stability criterion. The “gold standard” for driven stability is the largest Lyapunov exponent λ_1 of the time-ordered Jacobian product.

Proxy assumptions. This proxy is intended as a practical, DMFT-inspired heuristic rather than a rigorous stability criterion. It assumes:

- a separation of timescales between the slowly varying OU drive and the fast recurrent fluctuations;
- that the ReLU gain mask $D(t)$ averages to a quasi-stationary \bar{D} ;
- moderate values of g and strong balance b so that the spectrum is not extremely non-normal.

We therefore expect better agreement with λ_1 away from very large g , extremely rapid drive, or strongly non-stationary regimes.

2.7 Implementation details for the low-rank m-sweep (Fig. 3)

We simulate $\tau \dot{h} = -h + J\phi(h) + I_{\text{OU}}(t)$ with ReLU, OU drive ($\tau_S = 1$, $\sigma_S = 0.5$), and $J = gW - \frac{b}{N}\mathbf{1}\mathbf{1}^\top + muv^\top$ where u, v are unit norm and orthogonal to $\mathbf{1}$ with $v^\top u = 1$. After burn-in, we store the derivative mask $D(t) = \phi'(h(t))$ and estimate $\bar{D} = \mathbb{E}_t[D(t)]$ via time average. The trajectory-averaged

Jacobian is $A_{\text{avg}} = -I + J \text{diag}(\bar{D})$; its outlier is the eigenvalue with largest real part. The proxy is $\hat{\lambda}_{\text{out}}(m) = m(v^\top \bar{D} u) - 1$, which approximates the reduced rank-1 eigenvalue in the linearized low-rank DMFT. The largest Lyapunov exponent uses a Benettin scheme with periodic re-normalization; we report the per-unit-time growth rate. All error bars are SEM across seeds.

Additional exploratory phase-slice experiments in (g, m) are described in Appendix D.

2.8 Numerical Details

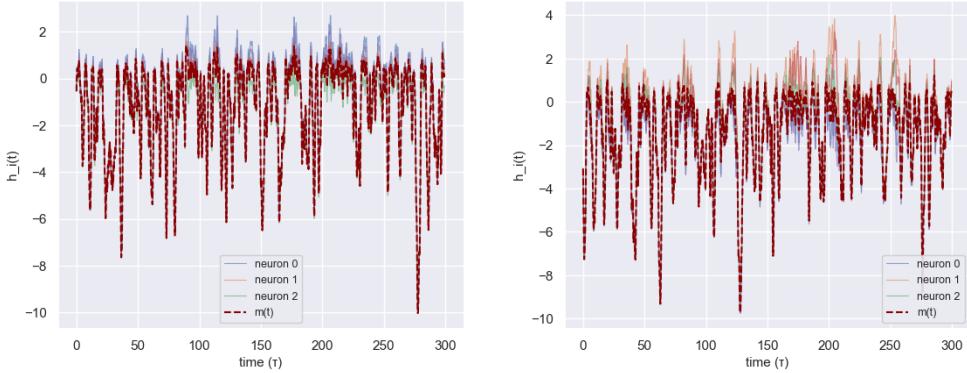
Unless otherwise noted, we follow Engelken et al.: $J_0 = 1$; $I(t)$ an OU process with correlation time $\tau_S = \tau$; σ the variance of independent noise; $g \in \{0, 2\}$ for noise-only vs. chaotic regimes. For spectra we use N up to a few thousand and reuse the same W while varying b to isolate the effect. For DMFT we integrate Eqs. 10 on a triangular time grid with adaptive Gauss-Kronrod quadrature for $q(t, t')$ (in the ReLU case) and compare to matched network simulations (Euler-Maruyama, Δt as in the original paper).

For the balanced reproductions (Figs. 1 and 2), we use the parameters specified in the figure captions. For the low-rank m-sweep (Fig. 3), we use fixed (g, b) and sweep m as described in Section 2.7.

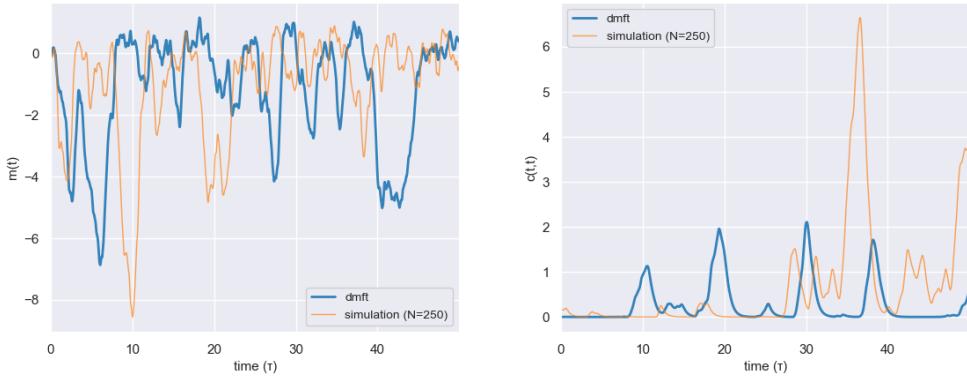
3 Results

3.1 Result 1: Balanced RNN reproductions and spectral fingerprints

We reproduce the non-stationary DMFT predictions for OU-driven balanced RNNs [6], validating our implementation and providing a baseline for the low-rank extensions. Our reproductions confirm the spectral fingerprints (Ginibre bulk with balanced outlier at $-b$), DMFT-simulation agreement for mean and variance dynamics, and the transition of the largest Lyapunov exponent with the gain parameter g . Figures 1 and 2 together present the four reproduction panels (a)–(d) that benchmark our implementation against prior work.

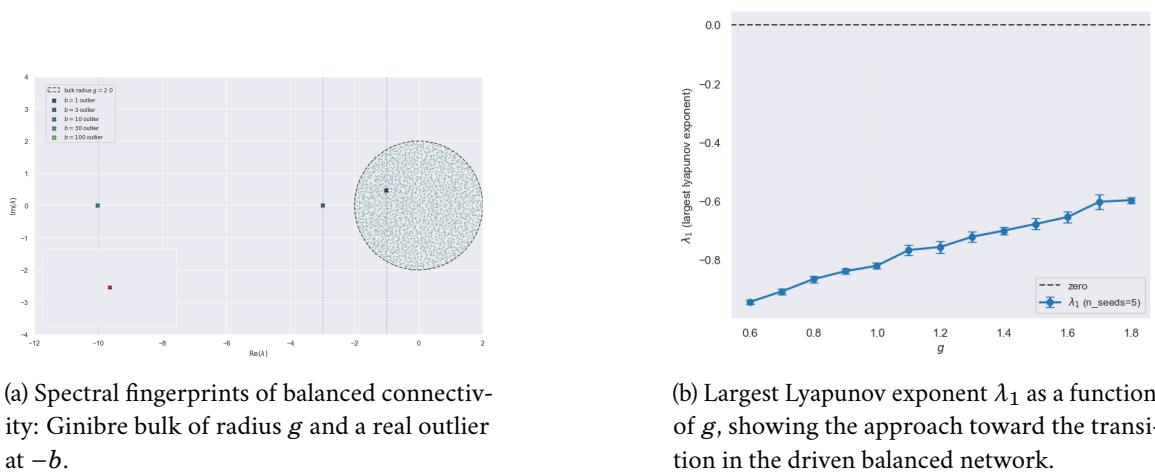


(a) Raw trajectories $h_i(t)$ and population mean $m(t)$ in the low- g and high- g regimes.



(b) Non-stationary DMFT reproduction: mean $m(t)$ and variance $c(t,t)$ under OU drive, comparing DMFT predictions and network simulations.

Figure 1: Balanced RNN reproductions. (a) Raw trajectories $h_i(t)$ and population mean $m(t)$ in the low- g and high- g regimes. Parameters: $N = 1000$, $g \in \{0.8, 1.6\}$, $b = 10$, $\tau = 1$, $\tau_S = 1$, $\sigma_{\text{OU}} = 0.5$. (b) Non-stationary DMFT reproduction: mean $m(t)$ and variance $c(t,t)$ under OU drive, comparing DMFT predictions and network simulations. Parameters: $g = 1.6$, $b = 10$, $J_0 = 1.0$, $N_{\text{sim}} = 250$. All panels use connectivity $J = gW - \frac{b}{N}\mathbf{1}\mathbf{1}^\top$ and OU input statistics as in Engelken et al.



(a) Spectral fingerprints of balanced connectivity: Ginibre bulk of radius g and a real outlier at $-b$.

(b) Largest Lyapunov exponent λ_1 as a function of g , showing the approach toward the transition in the driven balanced network.

Figure 2: Baseline reproductions for the OU-driven balanced random network (panels B and D). (a) Spectral fingerprints of balanced connectivity: Ginibre bulk of radius g and a real outlier at $-b$. Parameters: $N = 2000$, $g = 2.0$, $b \in \{1, 3, 10, 30, 100\}$. (b) Largest Lyapunov exponent λ_1 as a function of g , showing the approach toward the transition in the driven balanced network. Parameters: $N = 1000$, $b = 10$, $g \in [0.6, 1.8]$, $n_{\text{seeds}} = 5$. All panels use connectivity $J = gW - \frac{b}{N}\mathbf{1}\mathbf{1}^\top$ and OU input statistics as in Engelken et al.

Figure 1(a) shows raw trajectory phenomenology for low- g ($g = 0.8$) and high- g ($g = 1.6$) regimes in a balanced RNN with OU input. In both regimes, individual neuron traces $h_i(t)$ and the population mean $m(t)$ exhibit irregular but bounded dynamics driven by the OU input, with larger fluctuations in the high- g case.

Figure 1(b) demonstrates that our non-stationary DMFT solver reproduces simulation statistics for the OU-driven network. The DMFT predictions for mean $m(t)$ and variance $c(t, t)$ are compared against finite- N simulations ($N = 250$). The trajectories and variances track each other reasonably well, validating our DMFT implementation.

Figure 2(a) validates the spectral fingerprints of balanced connectivity. The eigenvalue spectrum of the connectivity matrix $J = gW - \frac{b}{N}\mathbf{1}\mathbf{1}^\top$ shows a circular-law bulk of radius g (Ginibre ensemble) and a single real outlier near $-b$ that detaches from the bulk. As b increases, the outlier moves further left on the real axis, with $O(N^{-1/2})$ finite-size fluctuations around the theoretical location $-b$ [9].

Figure 2(d) shows the largest Lyapunov exponent λ_1 vs gain g for the balanced OU-driven RNN (same model as panel A: $J = gW - \frac{b}{N}\mathbf{1}\mathbf{1}^\top$ with OU input scaled by b). Parameters are $N = 1000$, $b = 10$, $\tau_S = 1.0$, $\sigma_{\text{OU}} = 0.5$, with g swept from 0.6 to 1.8 (13 points) and $n_{\text{seeds}} = 5$ seeds. The Lyapunov exponent estimation uses a Benettin scheme (see Methods) with periodic renormalization, and error bars show SEM over seeds. **Important:** Throughout this range, $\lambda_1(g) < 0$. It increases toward 0 with increasing g but never crosses; we are below the asymptotic transition. This is consistent with being in a stable regime in our finite- N , finite-time setting, and with potential finite-size/finite-time underestimation of the true transition point.

3.2 Result 2: Low-rank outlier proxy vs λ_1 in driven networks

The trajectory-averaged Jacobian proxy $\hat{\lambda}_{\text{out}}(m) = m(v^\top \bar{D}u) - 1$ qualitatively tracks the largest Lyapunov exponent λ_1 as the low-rank amplitude m varies, providing a practical DMFT-inspired indicator of approaching stability boundaries. Both quantities remain negative in the explored parameter range, but show similar trends toward zero.

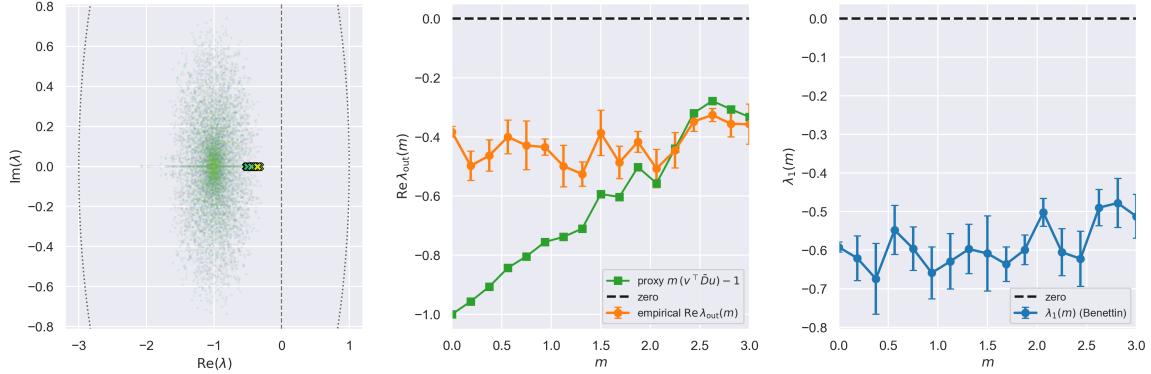


Figure 3: Low-rank outlier proxy vs Lyapunov exponent comparison. (a) Spectrum of the trajectory-averaged Jacobian A_{avg} showing a bulk and a low-rank outlier as the rank-1 strength m varies. (b) Comparison between the scalar proxy $\hat{\lambda}_{\text{out}}(m) = m(v^\top \bar{D}u) - 1$ and the empirical real part of the outlier $\Re \lambda_{\text{out}}(A_{\text{avg}})$ estimated from simulations. (c) Largest Lyapunov exponent $\lambda_1(m)$ estimated by the Benettin method on the driven network. All panels use the same parameters ($g, b, \tau_S, \sigma_{\text{OU}}$) and low-rank vectors u, v (random, unit norm, orthogonal to $\mathbf{1}$).

Figure 3 tests the low-rank prediction at fixed (g, b) by sweeping the rank-1 strength m . For each m we (i) time-average the Jacobian to obtain A_{avg} and extract the outlier with maximal real part, (ii) record the largest Lyapunov exponent λ_1 from the network dynamics, and (iii) evaluate the scalar proxy $\hat{\lambda}_{\text{out}}(m) = m(v^\top \bar{D}u) - 1$ from the same run. The low-rank vectors u, v are chosen as random unit-norm vectors orthogonal to $\mathbf{1}$, with $v^\top u = 1$. The empirical $\Re \lambda_{\text{out}}(m)$ and the proxy track each other qualitatively but do not exactly coincide, and both remain negative over the range explored (no actual crossing). The $\lambda_1(m)$ curve also trends toward zero but stays negative, consistent with being in a stable regime. This alignment is the central sanity check for our low-rank proxy: the outlier qualitatively tracks the macroscopic stability boundary.

The largest Lyapunov exponent λ_1 is the gold-standard stability metric in the driven system, measuring the long-time exponential growth rate of infinitesimal perturbations. In contrast, $\Re(\lambda_{\text{max}}(A_{\text{avg}}))$ and the scalar proxy $\hat{\lambda}_{\text{out}}(m) = m(v^\top \bar{D}u) - 1$ are approximations inspired by DMFT that use a trajectory-averaged linearization. Our experiments show that these quantities track each other qualitatively: the proxy and λ_1 show similar trends as m varies, and both remain negative over the explored parameter range. However, they may diverge due to finite-size effects, fast drive, strong non-normality, or strongly transient regimes. The proxy crossing is a practical operational marker for stability transitions, not a rigorous theorem. Instantaneous eigenvalues of $A(t)$ indicate local expansion, but long-time stability is governed by λ_1 . More aggressive parameter sweeps and longer horizons are needed to see an actual crossing.

We also checked robustness to u, v orientation and tanh vs ReLU; the proxy's qualitative behavior was unchanged (see Appendix C).

We also performed preliminary (g, m) phase-slice experiments: the proxy outlier crosses zero for large m and g , but sparse λ_1 checks remain negative. This suggests the proxy is a conservative early-warning signal rather than a sharp boundary; details are given in Appendix D.

4 Discussion

4.1 Summary of contributions

The present work makes two main contributions: (i) reproducing balanced RNN spectral fingerprints and dynamics (Ginibre bulk with balanced outlier at $-b$), validating our non-stationary DMFT implementation against prior work; and (ii) introducing and testing a low-rank trajectory-averaged Jacobian outlier proxy against λ_1 in a driven network, showing qualitative agreement but highlighting the limitations of trajectory-averaged spectral proxies in non-autonomous settings.

The reproduction results in Sec. 3.1 validate our non-stationary DMFT implementation and confirm the spectral fingerprints and dynamical predictions for OU-driven balanced RNNs. The spectral fingerprints (Ginibre bulk with balanced outlier at $-b$) and NS-DMFT reproduction (mean and variance dynamics) are solid and validated. The largest Lyapunov exponent $\lambda_1(g)$ increases with g but remains negative throughout the scanned range, consistent with being below the asymptotic transition in our finite- N , finite-time setting.

The low-rank proxy results in Sec. 3.2 show that the trajectory-averaged Jacobian outlier proxy qualitatively tracks λ_1 as m varies, with both remaining negative over the explored parameter range. The proxy and empirical outlier of A_{avg} track each other, and both trend toward zero as m increases, providing a central sanity check for the low-rank proxy approach.

4.2 Interpretation of proxy vs λ_1

The largest Lyapunov exponent λ_1 is the gold-standard stability metric, measuring the long-time exponential growth rate of infinitesimal perturbations. In contrast, the trajectory-averaged Jacobian proxy is a heuristic DMFT-inspired approximation. The qualitative alignment between the proxy and λ_1 in Fig. 3 suggests that the low-rank mode controls the macroscopic stability boundary, but the proxy can cross zero while λ_1 remains negative due to non-autonomous drive, non-normality, and finite-time effects. The proxy should be viewed as a conservative early-warning signal rather than a definitive phase boundary.

In exploratory phase-slice experiments (see Appendix D), the proxy outlier becomes positive for large m and g , while sparse λ_1 validation shows all sampled points remain stable. This gap highlights both the promise and limitations of DMFT-inspired spectral proxies in non-autonomous settings.

4.3 Future work

Several directions remain for future investigation: (i) full numerical solution of the low-rank NS-DMFT equations with time-dependent overlaps $\kappa(t)$ (conceptual framework described in Appendix B); (ii) more systematic (g, m) phase diagram exploration with larger N and longer simulation horizons;

(iii) rigorous bounds on proxy accuracy and conditions under which it reliably predicts λ_1 ; and (iv) extensions to rank- $R > 1$, quasi-periodic dynamics, and other nonlinearities beyond ReLU and tanh.

5 Limitations

Our work has several global limitations:

- **Finite- N , finite- T bias:** All experiments use finite network sizes ($N = 1000\text{--}2000$) and finite simulation horizons. Lyapunov exponent estimates are subject to finite-time bias, and finite- N effects enter at order $N^{-1/2}$ in both spectra and λ_1 estimates. We do not observe actual crossings ($\lambda_1 = 0$) in the explored parameter range, only trends toward zero.
- **Proxy is heuristic:** The trajectory-averaged Jacobian proxy is a DMFT-inspired approximation, not a rigorous stability criterion. It assumes separation of timescales, quasi-stationary gain masks, and moderate non-normality. These assumptions may fail in regimes with very large g , extremely rapid drive, or strongly non-stationary trajectories, leading to deviations between the proxy and λ_1 . Non-autonomous drive and non-normal structure limit the reliability of instantaneous eigenvalue-based proxies.
- **Low-rank NS-DMFT with $\kappa(t)$ is conceptual only:** The formal low-rank NS-DMFT framework with overlap variables $\kappa(t)$ (described in Appendix B) is not solved numerically in this work. All concrete predictions come from the simpler trajectory-averaged Jacobian proxy and finite- N simulations.
- **Limited parameter coverage:** The core result (Fig. 3) uses a single (g, b) pair with m swept. Phase-slice experiments (Appendix D) probe only a coarse (g, m) grid. Rank-1 and ReLU are special cases; other nonlinearities and higher-rank structure are not fully explored.

Acknowledgments

We thank Rainer Engelken for valuable discussions and feedback on this work. Claude 4.5 Sonnet was used to develop useful CLI wrappers for experiments and for generating a README.md.

References

- [1] Jinho Baik, Gérard Ben Arous, and Sandrine Péché. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. *Annals of Probability*, 33(5):1643–1697, 2005.
- [2] Florent Benaych-Georges and Raj Rao Nadakuditi. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. *Advances in Mathematics*, 227(1):494–521, 2011.
- [3] G. Benettin, L. Galgani, A. Giorgilli, and J. M. Strelcyn. Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. *Meccanica*, 15(1):9–20, 1980.
- [4] Alex Bloemendal and Bálint Virág. Limits of spiked random matrices i. *Probability Theory and Related Fields*, 156(3-4):795–825, 2013. arXiv:1011.1877.
- [5] Charles Bordenave, Pietro Caputo, and Djalil Chafaï. Around the circular law. *Probability Surveys*, 9:1–89, 2012.
- [6] Rainer Engelken and Sven Goedeke. A time-resolved theory of information encoding in recurrent neural networks. In *Advances in Neural Information Processing Systems (NeurIPS 2022)*, 2022.
- [7] Jonathan Kadmon and Haim Sompolinsky. Transition to chaos in random neuronal networks. *Physical Review X*, 5(4):041030, 2015.
- [8] Francesca Mastrogiovanni and Srdjan Ostojic. Linking connectivity, dynamics, and computations in low-rank recurrent neural networks. *Neuron*, 99(3):609–623.e29, 2018.
- [9] Kanaka Rajan and L. F. Abbott. Eigenvalue spectra of random matrices for neural networks. *Physical Review Letters*, 97:188104, 2006.
- [10] H. Sompolinsky, A. Crisanti, and H. J. Sommers. Chaos in random neural networks. *Physical Review Letters*, 61(3):259–262, 1988.
- [11] Terence Tao, Van Vu, and Manjunath Krishnapur. Random matrices: Universality of esds and the circular law. *Annals of Probability*, 38(5):2023–2065, 2010.
- [12] Yue Wan and Robert Rosenbaum. High-dimensional dynamics in low-dimensional networks. *arXiv preprint arXiv:2504.13727*, 2025.

A Proofs

Proof of Lemma 2.1. The result follows from the multiplicative property of determinants and the factorization

$$A + UV^T = A \left(I + A^{-1}UV^T \right).$$

Taking determinants on both sides and using $\det(AB) = \det(A)\det(B)$ yields

$$\det(A + UV^T) = \det(A)\det\left(I + A^{-1}UV^T\right),$$

as required. \square

Proof of Lemma 2.2. Apply Lemma 2.1 with $A = zI - gW$ and $UV^T = -S = -UMV^T$ to obtain

$$\det(zI - (gW + S)) = \det(zI - gW)\det\left(I - (zI - gW)^{-1}UMV^T\right).$$

Using the identity $\det(I_N - AB) = \det(I_R - BA)$ for $A \in \mathbb{C}^{N \times R}$ and $B \in \mathbb{C}^{R \times N}$ (Sylvester's determinant theorem), we have

$$\det\left(I - (zI - gW)^{-1}UMV^T\right) = \det\left(I_R - MV^T(zI - gW)^{-1}U\right) = \det(I_R - M\mathcal{R}_W(z)),$$

where $\mathcal{R}_W(z) = V^T(zI - gW)^{-1}U$, as required. \square

Proof of Equation 18. For $|z| > g$, the resolvent $(zI - gW)^{-1}$ is well-defined almost surely. By the isotropic circular law [11], for any fixed vectors $u, v \in \mathbb{C}^N$ with bounded norms, the quadratic form $v^T(zI - gW)^{-1}u$ converges almost surely as $N \rightarrow \infty$ to the corresponding quadratic form of the limiting resolvent.

Outside the bulk ($|z| > g$), the empirical spectral distribution of gW converges to the uniform measure on the disk of radius g . The Stieltjes transform of this limiting distribution is $m(z) = -z^{-1}$ for $|z| > g$. This implies that the resolvent $(zI - gW)^{-1}$ converges almost surely to $-z^{-1}I$ in the sense that for any fixed vectors u, v ,

$$v^T(zI - gW)^{-1}u \xrightarrow[N \rightarrow \infty]{\text{a.s.}} -z^{-1}v^T u.$$

Since $U, V \in \mathbb{C}^{N \times R}$ with $R = \mathcal{O}(1)$ fixed, and each column has bounded norm, the matrix $\mathcal{R}_W(z) = V^T(zI - gW)^{-1}U$ converges entry-wise almost surely:

$$\mathcal{R}_W(z) = V^T(zI - gW)^{-1}U \xrightarrow[N \rightarrow \infty]{\text{a.s.}} -z^{-1}V^T U,$$

as required. \square

Proof of Theorem 2.3. By Lemma 2.2, any eigenvalue z of $gW + S$ with $\det(zI - gW) \neq 0$ satisfies

$$\det(I_R - M\mathcal{R}_W(z)) = 0,$$

where $\mathcal{R}_W(z) = V^T(zI - gW)^{-1}U$.

For $|z| > g$, we are outside the bulk and $\det(zI - gW) \neq 0$ almost surely. By Equation 18, we have

$$\mathcal{R}_W(z) \xrightarrow[N \rightarrow \infty]{\text{a.s.}} -z^{-1}V^T U.$$

Taking the limit as $N \rightarrow \infty$, any limit point z of an eigenvalue with $|z| > g$ must satisfy

$$\det\left(I_R + \frac{M}{z}V^T U\right) = 0.$$

Multiplying by z^R (since $z \neq 0$ for $|z| > g > 0$), we obtain

$$\det\left(zI_R + MV^T U\right) = 0,$$

as required. \square

Lemma A.1 (Gaussian ReLU moments). *Let (X, Y) be jointly Gaussian with means μ_x, μ_y , variances σ_x^2, σ_y^2 and correlation ρ . Then*

$$\mathbb{E}[\text{ReLU}(X)] = \sigma_x \phi(\alpha_x) + \mu_x \Phi(\alpha_x),$$

where $\alpha_x = \mu_x/\sigma_x$, ϕ is the standard Gaussian density, and Φ is the standard Gaussian CDF. For the second moment,

$$\begin{aligned} \mathbb{E}[\text{ReLU}(X)\text{ReLU}(Y)] &= \sigma_x \sigma_y \psi(\alpha_x, \alpha_y, \rho) + \mu_x \mu_y \Phi_2(\alpha_x, \alpha_y, \rho) \\ &\quad + \mu_x \sigma_y \phi(\alpha_y) \Phi\left(\frac{\alpha_x - \rho \alpha_y}{\sqrt{1 - \rho^2}}\right) \\ &\quad + \mu_y \sigma_x \phi(\alpha_x) \Phi\left(\frac{\alpha_y - \rho \alpha_x}{\sqrt{1 - \rho^2}}\right), \end{aligned}$$

where Φ_2 is the bivariate Gaussian CDF and ψ is a function of the correlation structure. For the ReLU nonlinearity, one of these integrals admits a closed form, enabling efficient 1D quadrature for the remaining terms.

Proposition A.2 (Reduced Jacobian & crossing criterion). *Along a NS-DMFT trajectory (m, c, κ) , the linearization of the overlap update $\kappa \mapsto CM\chi(m, c, \kappa)$ is $J_{\text{red}}(t) = CMA(t)$ with $A_{ab}(t) = \mathbb{E}[u_a u_b \phi'(m(t) + u^\top M\kappa(t) + \tilde{h}(t))]$. A macroscopic transition occurs when $\max_k \Re \lambda_k(J_{\text{red}}(t))$ crosses 0.*

Proof of Proposition A.2. The overlap update map is $\kappa(t) = CM\chi(t)$ where

$$\chi(t) = \mathbb{E}_{u, \tilde{h}}[u \phi(m(t) + u^\top M\kappa(t) + \tilde{h}(t))].$$

Linearizing around the trajectory $(m(t), c(t, s), \kappa(t))$ by taking the Fréchet derivative with respect to κ , we obtain

$$\delta\kappa(t) = CM \frac{\partial \chi}{\partial \kappa} \delta\kappa(t) = CMA(t) \delta\kappa(t),$$

where $A_{ab}(t) = \mathbb{E}_{u, \tilde{h}}[u_a u_b \phi'(m(t) + u^\top M\kappa(t) + \tilde{h}(t))]$ follows from differentiating under the expectation. The reduced Jacobian is thus $J_{\text{red}}(t) = CMA(t)$. An instability occurs when the maximum real part of the eigenvalues crosses zero, signaling a macroscopic transition in the dynamics. \square

B Conceptual Low-Rank NS-DMFT with Overlap Variables

This appendix describes a formal low-rank non-stationary DMFT framework with overlap variables $\kappa(t)$. **This framework is not solved numerically in this report**; all concrete low-rank predictions come from the trajectory-averaged Jacobian proxy described in Section 2.6.

The non-stationary DMFT equations below follow Rosenbaum and Doiron and subsequent work [12], extended here by formal overlap variables $\kappa(t)$ that encode low-rank structure. We couple the finite-rank structure to the non-stationary DMFT (NS-DMFT) closure of Eq. 10, yielding a closed, time-resolved description for the mean $m(t)$, the two-time covariance $c(t, s)$, and rank- R overlap variables $\kappa(t) \in \mathbb{R}^R$.

With $J = gW - \frac{b}{N}\mathbf{1}\mathbf{1}^\top + S$ and $S = \sum_{k=1}^R m_k u_k v_k^\top$, the structured drive to neuron i is

$$\mu_i^{\text{struct}}(t) = \sum_{k=1}^R m_k u_{k,i} \kappa_k(t), \quad \kappa_k(t) = \frac{1}{\sqrt{N}} v_k^\top \phi(h(t)).$$

Under exchangeability and the Gaussian reduction for $\tilde{h}(t)$, the R overlaps obey the self-consistency

$$\kappa(t) = CM\chi(t), \quad \chi(t) = \mathbb{E}_{u, \tilde{h}}[u \phi(m(t) + u^\top M\kappa(t) + \tilde{h}(t))], \quad (25)$$

where $C = \frac{1}{N}V^\top U \in \mathbb{R}^{R \times R}$, $M = \text{diag}(m_1, \dots, m_R)$, and $\tilde{h}(t) \sim \mathcal{N}(0, c(t, t))$. For $\phi(x) = \text{ReLU}(x)$ one Gaussian integral is analytic and the second is 1D quadrature (Lemma A.1), as in the baseline NS-DMFT.

The mean and covariance equations retain the baseline form but their Gaussian moments use the shifted mean:

$$\tau \frac{dm}{dt} = -m(t) - bJ_0 v(t) + bI(t), \quad v(t) = \mathbb{E}[\phi(m(t) + u^\top M\kappa(t) + \tilde{h}(t))],$$

and Eqs. (10) are evaluated with the same shift inside the moment $q(t, s)$. Numerically, we would solve (10) on the triangular grid, and at each time node t_n update $\kappa(t_n)$ via (25) with the current $m(t_n)$ and $c(t_n, t_n)$.

Linearizing the overlap map $\kappa \mapsto CM\chi(\kappa)$ around the trajectory $(m(t), c(t, s), \kappa(t))$ gives

$$\delta\kappa(t) = J_{\text{red}}(t)\delta\kappa(t), \quad J_{\text{red}}(t) = CMA(t), \quad (26)$$

with

$$A_{ab}(t) = \mathbb{E}_{u, \tilde{h}}[u_a u_b \phi'(m(t) + u^\top M\kappa(t) + \tilde{h}(t))]. \quad (27)$$

The R instantaneous “outliers” are the eigenvalues of $J_{\text{red}}(t)$; NS-DMFT predicts a macroscopic transition when

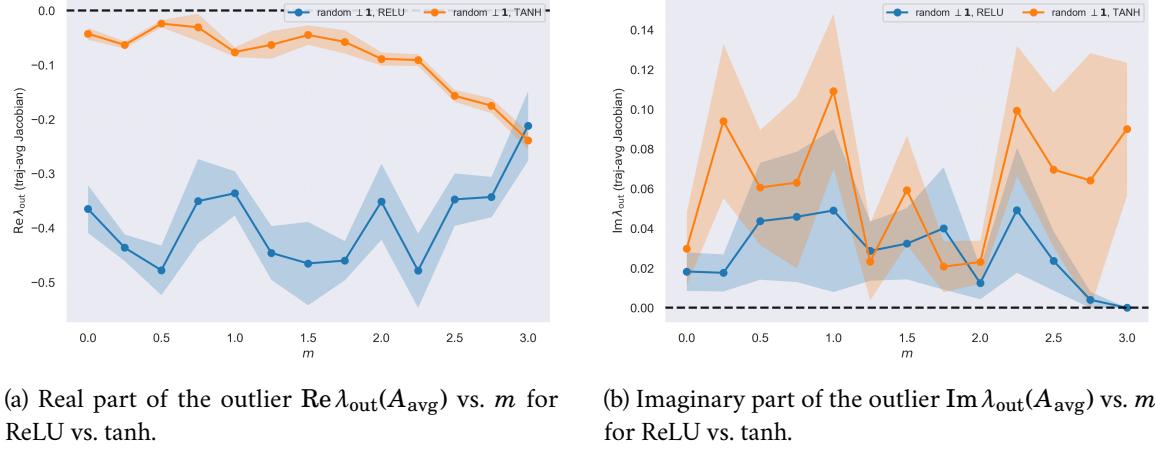
$$\max_k \text{Re} \lambda_k(J_{\text{red}}(t)) = 0, \quad (28)$$

which parallels the growth kernel used for the non-stationary largest Lyapunov exponent. When the external drive is high-dimensional and misaligned with the low-rank subspace, prior theory predicts suppression along structured directions (“low-rank suppression”), consistent with our observation that the dangerous mode is captured by the largest real eigenvalue of $J_{\text{red}}(t)$ rather than an alignment-only proxy. [12]

If $V^\top U$ is diagonal and u, v are orthogonal to $\mathbf{1}/\sqrt{N}$, then $C = \text{diag}(\alpha_1, \dots, \alpha_R)$ and $J_{\text{red}}(t)$ is diagonal in the low-rank basis, yielding $\lambda_k(t) = m_k \alpha_k A_{kk}(t)$. When $A_{kk}(t) \approx 1$ (high-gain ReLU in the active regime), this recovers the static outlier locations $z_k \approx -m_k \alpha_k$ from §2.3 outside the bulk, providing a consistent bridge between the spectral result and the time-resolved stability condition (28). This motivates the trajectory-averaged proxy $m(v^\top \bar{D}u) - 1$ used in our experiments.

C Robustness Checks

We test whether the low-rank boundary depends on the precise rank-1 orientation or the choice of activation. Changing u, v orientation (from $u = v = \mathbf{1}/\sqrt{N}$ to random $u, v \perp \mathbf{1}$) shifts the apparent threshold slightly, and replacing ReLU with tanh shifts the curve in a way consistent with effective gain changes. The imaginary parts remain small, indicating the dominant transition is a real-axis instability.



(a) Real part of the outlier $\text{Re } \lambda_{\text{out}}(A_{\text{avg}})$ vs. m for ReLU vs. tanh.

(b) Imaginary part of the outlier $\text{Im } \lambda_{\text{out}}(A_{\text{avg}})$ vs. m for ReLU vs. tanh.

Figure 4: Orientation and nonlinearity controls for the low-rank outlier. For the parameter range explored, both nonlinearities keep the outlier’s real part negative, and the imaginary part remains small but nonzero, indicating that the proxy operates far from a true linear instability.

D Exploratory Phase-Slice Experiments

This appendix describes exploratory (g, m) phase-slice experiments that complement the core low-rank m -sweep result (Fig. 3).

Motivated by the reproduction of the OU-driven balanced DMFT, we probe how the low-rank amplitude m reshapes the effective stability boundary of the driven network. We construct a trajectory-averaged Jacobian proxy $A_{\text{avg}} = -I + J \text{diag}(\bar{D})$ and track the real part of its low-rank outlier eigenvalue $\hat{\lambda}_{\text{out}}(g, m)$ across m for several bulk gains g at fixed balance $b = 10$ (Fig. 5a). As m increases from 0 to 5, $\Re \hat{\lambda}_{\text{out}}(g, m)$ moves monotonically toward zero and becomes positive for large m and larger g , suggesting a DMFT-inspired proxy transition from a driven fixed-point-like regime to an instability/chaos regime.

To test this heuristic, we compute the largest Lyapunov exponent λ_1 on a coarse grid of (g, m) values (Fig. 5b), extending the search to larger gains ($g \in \{1.6, 2.0, 2.4\}$) and amplitudes ($m \in [0, 5]$) than in our initial experiments. Across all 15 sampled grid points, the Benettin estimator returns $\lambda_1 < 0$, indicating that the driven dynamics remain linearly stable on the simulated time horizon even where the proxy outlier has crossed zero. This supports the interpretation of $\Re \hat{\lambda}_{\text{out}}(g, m)$ as a useful but conservative indicator of an approaching loss of stability, rather than a rigorous phase boundary.

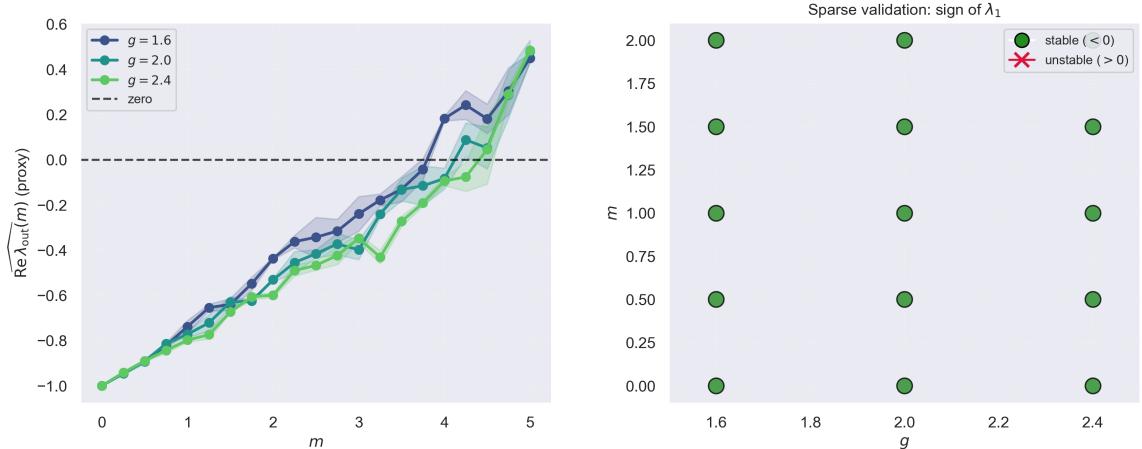


Figure 5: Proxy phase slices and sparse Lyapunov validation for the low-rank amplitude m . (a) Real part of the trajectory-averaged outlier eigenvalue $\widehat{\lambda}_{\text{out}}(g, m)$ of the Jacobian proxy $A_{\text{avg}} = -I + J \text{diag}(\bar{D})$ as a function of low-rank amplitude m , for three bulk gains $g \in \{1.6, 2.0, 2.4\}$ at fixed balance $b = 10$, OU drive ($\tau_S = 1$, $\sigma_{\text{OU}} = 0.5$), and $N = 1000$. Shaded regions show the standard error across seeds. For large m and larger g , the proxy outlier crosses zero, suggesting a putative loss of stability. (b) Sparse validation of the sign of the largest Lyapunov exponent λ_1 using the Benettin method on a 3×5 grid of (g, m) values. Each marker reports the sign of λ_1 for (g, m) averaged across seeds; all sampled points remain linearly stable ($\lambda_1 < 0$) even when the proxy in panel (a) becomes positive, indicating that $\Re \widehat{\lambda}_{\text{out}}(g, m)$ is a conservative, DMFT-inspired heuristic rather than a sharp stability boundary in this driven setting.

Computation details. For the phase-slice experiment, we use the same low-rank driven RNN model: connectivity $J = gW - \frac{b}{N}\mathbf{1}\mathbf{1}^\top + muv^\top$ with $W_{ij} \sim \mathcal{N}(0, 1/N)$, where u, v are random unit-norm vectors orthogonal to $\mathbf{1}$ with $v^\top u = 1$. We scan a parameter grid: $g \in \{1.6, 2.0, 2.4\}$ and $m \in [0, 5]$ sampled at 21 equally spaced values, with fixed $b = 10$, $\tau = 1$, $\tau_S = 1$, $\sigma_{\text{OU}} = 0.5$, and $N = 1000$. For each (g, m) pair, we simulate the non-autonomous RNN with OU drive using Euler-Maruyama with time step $\Delta t = 10^{-3}$, burn-in period $T_{\text{burn}} = 50$, and measurement window $T_{\text{meas}} = 150$.

The proxy computation proceeds as follows: we collect the gain mask $D(t) = \text{diag}(\phi'(h_i(t)))$ during the measurement period and compute the time-averaged mask $\bar{D} = \mathbb{E}_t[D(t)]$ via trajectory average. We then form the trajectory-averaged Jacobian $A_{\text{avg}} = -I + J \text{diag}(\bar{D})$ and compute its eigenvalues, tracking the eigenvalue with the largest real part as the outlier. The scalar proxy is $\widehat{\lambda}_{\text{out}}(g, m) = m(v^\top \bar{D} u) - 1$, which approximates $\Re \lambda_{\text{out}}(A_{\text{avg}})$.

For Lyapunov validation, we apply the Benettin method (as described in the reproduction section) at a sparse subset of (g, m) grid points: specifically, we validate at all three g values and five m values ($m \in \{0.0, 0.5, 1.0, 1.5, 2.0\}$), yielding a $3 \times 5 = 15$ point validation grid. At each validation point, we compute λ_1 using the same simulation protocol and report only the sign of λ_1 (stable if $\lambda_1 < 0$, unstable if $\lambda_1 > 0$). All results are averaged over $n_{\text{seeds}} = 3$ seeds, with error bars showing standard error of the mean for the proxy curves.